Study on Forest Classification Based on Object Oriented Techniques

Wang Shikuan
{"title":"Study on Forest Classification Based on Object Oriented Techniques","authors":"Wang Shikuan","doi":"10.3724/sp.j.1047.2012.00514","DOIUrl":null,"url":null,"abstract":"Since vegetation is an important indicator of global climate change,then the way to extract vegetation changing data should be put as the top priority.Especially,the extraction of sub-category information of forest vegetation has always been a difficult point in remote sensing image classification.And it is more difficult to extract sub-category information of the forest vegetation type only by taking advantage of the spectral information.As a widely-used method,object-oriented classification has been rapidly developed from the beginning of this century.Object-oriented classification method is mainly used in high-resolution remote sensing imagines,and it is applicable to medium resolution remote sensing images.This paper took Mentougou District,Beijing,which is mainly covered with forest vegetation,as the object of this research,and took HJ-1 image as the main data source then different buildings can be extracted by using the object-oriented classification method.By the reason of complicated terrain in this district,a hierarchical segmentation method was proposed in this research.Then different segmentation parameters could be set according to different buildings.Based on the spectral characteristic of the vegetation,appropriate characteristic parameters could be chosen and subordination function is constructed.After then,land cover types in this district could be extracted step by step and at the same time could be compared with those by the traditional maximum likelihood method.The result indicates that extraction accuracy of the forest vegetation sub-category data in this Mentougou District is 83% by using the object-oriented classification method.Compared with the traditional method,the extraction accuracy has been boosted a lot.","PeriodicalId":67025,"journal":{"name":"地球信息科学学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"地球信息科学学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3724/sp.j.1047.2012.00514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Since vegetation is an important indicator of global climate change,then the way to extract vegetation changing data should be put as the top priority.Especially,the extraction of sub-category information of forest vegetation has always been a difficult point in remote sensing image classification.And it is more difficult to extract sub-category information of the forest vegetation type only by taking advantage of the spectral information.As a widely-used method,object-oriented classification has been rapidly developed from the beginning of this century.Object-oriented classification method is mainly used in high-resolution remote sensing imagines,and it is applicable to medium resolution remote sensing images.This paper took Mentougou District,Beijing,which is mainly covered with forest vegetation,as the object of this research,and took HJ-1 image as the main data source then different buildings can be extracted by using the object-oriented classification method.By the reason of complicated terrain in this district,a hierarchical segmentation method was proposed in this research.Then different segmentation parameters could be set according to different buildings.Based on the spectral characteristic of the vegetation,appropriate characteristic parameters could be chosen and subordination function is constructed.After then,land cover types in this district could be extracted step by step and at the same time could be compared with those by the traditional maximum likelihood method.The result indicates that extraction accuracy of the forest vegetation sub-category data in this Mentougou District is 83% by using the object-oriented classification method.Compared with the traditional method,the extraction accuracy has been boosted a lot.
基于面向对象技术的森林分类研究
由于植被是全球气候变化的重要指标,那么如何提取植被变化数据应该是重中之重。特别是森林植被子类信息的提取一直是遥感影像分类中的一个难点。仅利用光谱信息提取森林植被类型的子类别信息较为困难。面向对象分类作为一种应用广泛的分类方法,从本世纪初开始得到了迅速的发展。面向对象分类方法主要应用于高分辨率遥感影像,适用于中分辨率遥感影像。本文以以森林植被覆盖为主的北京市门头沟区为研究对象,以HJ-1影像为主要数据源,采用面向对象的分类方法提取不同的建筑物。针对该地区地形复杂的特点,提出了一种分层分割的方法。然后根据不同的建筑物设置不同的分割参数。根据植被的光谱特征,选择合适的特征参数,构造隶属函数。然后逐步提取该地区的土地覆盖类型,并与传统的最大似然法进行比较。结果表明,采用面向对象的分类方法对门头沟区森林植被子类数据的提取精度为83%。与传统方法相比,该方法的提取精度大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
3757
期刊介绍: Journal of Geo-Information Science is an academic journal under the supervision of Chinese Academy of Sciences, jointly sponsored by Institute of Geographic Sciences and Resources, Chinese Academy of Sciences and Chinese Geographical Society, and also co-sponsored by State Key Laboratory of Resource and Environmental Information System, Key Laboratory of Virtual Geographic Environment of Ministry of Education and Key Laboratory of 3D Information Acquisition and Application of Ministry of Education. Founded in 1996, it is openly circulated in the form of a monthly magazine. Journal of Geoinformation Science focuses on publishing academic papers with geographic system information flow as the main research object, covering research topics such as geographic information cognitive theory, geospatial big data mining, geospatial intelligent analysis, etc., and pays special attention to the innovative results of theoretical methods in geoinformation science. The journal is aimed at scientific researchers, engineers and decision makers in the fields of cartography and GIS, remote sensing science, surveying and mapping science and technology. It is a core journal of China Science Citation Database (CSCD), a core journal of Chinese science and technology, a national Chinese core journal in domestic and international databases, and it is included in international databases, such as EI Compendex, Geobase, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信