Stability Enhancement Using Hyaluronic Acid Gels for Delivery of Human Fetal Progenitor Tenocytes.

A. Grognuz, C. Scaletta, A. Farron, D. Pioletti, W. Raffoul, L. Applegate
{"title":"Stability Enhancement Using Hyaluronic Acid Gels for Delivery of Human Fetal Progenitor Tenocytes.","authors":"A. Grognuz, C. Scaletta, A. Farron, D. Pioletti, W. Raffoul, L. Applegate","doi":"10.3727/215517916X690486","DOIUrl":null,"url":null,"abstract":"Tendon afflictions are very common, and their negative impact is high both at the workplace and in leisure activities. Tendinopathies are increasing in prevalence and can lead to tendon ruptures, where healing is a long process with outcomes that are often disappointing. Human fetal progenitor tenocytes (hFPTs) have been recently tested in vitro as a potential cell source to stimulate tendon regeneration. The aim of the present study was to compare different commercial hyaluronic acid (HA) gels, which could be used to resuspend hFPTs in a formulation that would allow for good delivery of the cells. No medium or growth supplement was used in the formulation in order to make it therapeutically dispensable. These conditions are stringent for cells, but surprisingly, we found that different formulations could allow a good survival for up to 3 days when stored at 4°C (refrigerator stable). The gels must allow a good survival of the cells in parallel with a good stability of the preparation over time and sufficient viscosity to remain in place if deposited on a wounded location. Moreover, the cells must conserve their ability to attach and to proliferate. hFPTs were able to survive and to recover from all of the tested gels, but some products showed some advantages over others in terms of survival and viscosity. Finally, the Ostenil Tendon HA gel fulfilled all of the requirements and presented the best compromise between a good survival and sufficient rheological characteristics to create an interesting cell delivery system.","PeriodicalId":9780,"journal":{"name":"Cell medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/215517916X690486","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/215517916X690486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Tendon afflictions are very common, and their negative impact is high both at the workplace and in leisure activities. Tendinopathies are increasing in prevalence and can lead to tendon ruptures, where healing is a long process with outcomes that are often disappointing. Human fetal progenitor tenocytes (hFPTs) have been recently tested in vitro as a potential cell source to stimulate tendon regeneration. The aim of the present study was to compare different commercial hyaluronic acid (HA) gels, which could be used to resuspend hFPTs in a formulation that would allow for good delivery of the cells. No medium or growth supplement was used in the formulation in order to make it therapeutically dispensable. These conditions are stringent for cells, but surprisingly, we found that different formulations could allow a good survival for up to 3 days when stored at 4°C (refrigerator stable). The gels must allow a good survival of the cells in parallel with a good stability of the preparation over time and sufficient viscosity to remain in place if deposited on a wounded location. Moreover, the cells must conserve their ability to attach and to proliferate. hFPTs were able to survive and to recover from all of the tested gels, but some products showed some advantages over others in terms of survival and viscosity. Finally, the Ostenil Tendon HA gel fulfilled all of the requirements and presented the best compromise between a good survival and sufficient rheological characteristics to create an interesting cell delivery system.
利用透明质酸凝胶增强人类胚胎祖细胞的稳定性。
肌腱疼痛非常常见,其负面影响在工作场所和休闲活动中都很高。肌腱病的患病率正在增加,并可导致肌腱断裂,愈合是一个漫长的过程,结果往往令人失望。人类胎儿祖细胞(hFPTs)最近在体外作为刺激肌腱再生的潜在细胞来源进行了测试。本研究的目的是比较不同的商业透明质酸(HA)凝胶,这种凝胶可以用来重悬hFPTs,在一种配方中,允许良好的细胞递送。配方中没有使用培养基或生长补充剂,以使其在治疗上可有可无。这些条件对细胞来说是严格的,但令人惊讶的是,我们发现不同的配方可以在4°C(冰箱稳定)下保存长达3天。凝胶必须允许细胞良好的存活,同时具有良好的制备稳定性,如果沉积在受伤部位,必须具有足够的粘度以保持原位。此外,细胞必须保持其附着和增殖的能力。hfpt能够存活并从所有测试的凝胶中恢复,但有些产品在存活和粘度方面比其他产品有一些优势。最后,ostil肌腱HA凝胶满足了所有的要求,并在良好的存活和足够的流变特性之间提供了最好的折衷,以创建一个有趣的细胞递送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell medicine
Cell medicine MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信