Yasuhiro Kubota, H. Noguchi, M. Seita, Takeshi Yuasa, H. Sasamoto, S. Nakaji, T. Okitsu, T. Fujiwara, N. Kobayashi
{"title":"Maintenance of Viability and Function of Rat Islets With the Use of ROCK Inhibitor Y-27632.","authors":"Yasuhiro Kubota, H. Noguchi, M. Seita, Takeshi Yuasa, H. Sasamoto, S. Nakaji, T. Okitsu, T. Fujiwara, N. Kobayashi","doi":"10.3727/215517913X674199","DOIUrl":null,"url":null,"abstract":"The number of patients with diabetes is on an increasing trend, thus leading to the belief that diabetes will be the largest medical problem of the 21st century. Islet transplantation can improve glycometabolic control in patients with type 1 diabetes. We studied the viability of Rho-associated protein kinase (ROCK) inhibitor Y-27632 in a culture system in vitro on freshly isolated rat islets. Islet isolation was conducted on a Lewis rat, and studies of culture solutions were split into two groups, one group using ROCK inhibitor Y-27632, and another without. On the seventh day of culture, we evaluated the differences for the cell morphology, viability, and insulin secretion. The Y-27632 group maintained form better than the group without Y-27632. With strong expression of Bcl-2 observed with the Y-27632 group, and expression suppressed with Bax, inhibition of apoptosis by Y-27632 was confirmed. The Y-27632 group predominantly secreted insulin. For islet transplantation, Y-27632 inhibited cell apoptosis in a graft and was also effective in promoting insulin secretion. We were able to confirm effective morphological and functional culture maintenance by separating islets from a rat and adding ROCK inhibitor Y-27632 to the medium.","PeriodicalId":9780,"journal":{"name":"Cell medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/215517913X674199","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/215517913X674199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The number of patients with diabetes is on an increasing trend, thus leading to the belief that diabetes will be the largest medical problem of the 21st century. Islet transplantation can improve glycometabolic control in patients with type 1 diabetes. We studied the viability of Rho-associated protein kinase (ROCK) inhibitor Y-27632 in a culture system in vitro on freshly isolated rat islets. Islet isolation was conducted on a Lewis rat, and studies of culture solutions were split into two groups, one group using ROCK inhibitor Y-27632, and another without. On the seventh day of culture, we evaluated the differences for the cell morphology, viability, and insulin secretion. The Y-27632 group maintained form better than the group without Y-27632. With strong expression of Bcl-2 observed with the Y-27632 group, and expression suppressed with Bax, inhibition of apoptosis by Y-27632 was confirmed. The Y-27632 group predominantly secreted insulin. For islet transplantation, Y-27632 inhibited cell apoptosis in a graft and was also effective in promoting insulin secretion. We were able to confirm effective morphological and functional culture maintenance by separating islets from a rat and adding ROCK inhibitor Y-27632 to the medium.