A novel directional sampling-based path planning algorithm for ambient intelligence navigation scheme in autonomous mobile robots

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Ganesan, S. Natarajan
{"title":"A novel directional sampling-based path planning algorithm for ambient intelligence navigation scheme in autonomous mobile robots","authors":"S. Ganesan, S. Natarajan","doi":"10.3233/ais-220292","DOIUrl":null,"url":null,"abstract":"Path planning algorithms determine the performance of the ambient intelligence navigation schemes in autonomous mobile robots. Sampling-based path planning algorithms are widely employed in autonomous mobile robot applications. RRT*, or Optimal Rapidly Exploring Random Trees, is a very effective sampling-based path planning algorithm. However, the RRT* solution converges slowly. This study proposes a directional random sampling-based RRT* path planning algorithm known as DR-RRT* to address the slow convergence issue. The novelty of the proposed method is that it reduces the search space by combining directional non-uniform sampling with uniform sampling. It employs a random selection approach to combine the non-uniform directional sampling method with uniform sampling. The proposed path planning algorithm is validated in three different environments with a map size of 384*384, and its performance is compared to two existing algorithms: RRT* and Informed RRT*. Validation is carried out utilizing a TurtleBot3 robot with the Gazebo Simulator and the Robotics Operating System (ROS) Melodic. The proposed DR-RRT* path planning algorithm is better than both RRT* and Informed RRT* in four performance measures: the number of nodes visited, the length of the path, the amount of time it takes, and the rate at which the path converges. The proposed DR-RRT* global path planning algorithm achieves a success rate of 100% in all three environments, and it is suited for use in all kinds of environments.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"15 1","pages":"269-284"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220292","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Path planning algorithms determine the performance of the ambient intelligence navigation schemes in autonomous mobile robots. Sampling-based path planning algorithms are widely employed in autonomous mobile robot applications. RRT*, or Optimal Rapidly Exploring Random Trees, is a very effective sampling-based path planning algorithm. However, the RRT* solution converges slowly. This study proposes a directional random sampling-based RRT* path planning algorithm known as DR-RRT* to address the slow convergence issue. The novelty of the proposed method is that it reduces the search space by combining directional non-uniform sampling with uniform sampling. It employs a random selection approach to combine the non-uniform directional sampling method with uniform sampling. The proposed path planning algorithm is validated in three different environments with a map size of 384*384, and its performance is compared to two existing algorithms: RRT* and Informed RRT*. Validation is carried out utilizing a TurtleBot3 robot with the Gazebo Simulator and the Robotics Operating System (ROS) Melodic. The proposed DR-RRT* path planning algorithm is better than both RRT* and Informed RRT* in four performance measures: the number of nodes visited, the length of the path, the amount of time it takes, and the rate at which the path converges. The proposed DR-RRT* global path planning algorithm achieves a success rate of 100% in all three environments, and it is suited for use in all kinds of environments.
一种基于方向采样的自主移动机器人环境智能导航路径规划算法
路径规划算法决定了自主移动机器人环境智能导航方案的性能。基于采样的路径规划算法在自主移动机器人中应用广泛。RRT*,即最优快速探索随机树,是一个非常有效的基于采样的路径规划算法。然而,RRT*解决方案收敛缓慢。本文提出了一种基于定向随机抽样的RRT*路径规划算法DR-RRT*来解决收敛缓慢的问题。该方法的新颖之处在于将定向非均匀采样与均匀采样相结合,减少了搜索空间。它采用随机选择的方法,将非均匀定向抽样与均匀抽样相结合。在地图尺寸为384*384的三种不同环境中对所提出的路径规划算法进行了验证,并与现有的两种算法RRT*和Informed RRT*进行了性能比较。利用带有Gazebo模拟器和机器人操作系统(ROS) Melodic的TurtleBot3机器人进行验证。本文提出的DR-RRT*路径规划算法在访问节点数、路径长度、耗时和路径收敛速度四个性能指标上均优于RRT*和Informed RRT*。本文提出的DR-RRT*全局路径规划算法在三种环境下均达到100%的成功率,适用于各种环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ambient Intelligence and Smart Environments
Journal of Ambient Intelligence and Smart Environments COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
4.30
自引率
17.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信