Portfolio selection in non-stationary markets

IF 0.3 Q4 BUSINESS, FINANCE
E. Kenig
{"title":"Portfolio selection in non-stationary markets","authors":"E. Kenig","doi":"10.3233/AF-200349","DOIUrl":null,"url":null,"abstract":"We consider the task of portfolio selection as a time series prediction problem. At each time-step we obtain prices of a universe of assets and are required to allocate our wealth across them with the goal of maximizing it, based on the historic price returns. We assume these returns are realizations of a general non-stationary stochastic process, and only assume they do not change significantly over short time scales. We follow a statistical learning approach, in which we bound the generalization error of a non-stationary stochastic process, using analogues of uniform laws of large numbers for non-i.i.d. random variables. We use the learning bounds to formulate an optimization algorithm for portfolio selection, and present favorable numerical results with financial data.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"9 1","pages":"35-47"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-200349","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-200349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the task of portfolio selection as a time series prediction problem. At each time-step we obtain prices of a universe of assets and are required to allocate our wealth across them with the goal of maximizing it, based on the historic price returns. We assume these returns are realizations of a general non-stationary stochastic process, and only assume they do not change significantly over short time scales. We follow a statistical learning approach, in which we bound the generalization error of a non-stationary stochastic process, using analogues of uniform laws of large numbers for non-i.i.d. random variables. We use the learning bounds to formulate an optimization algorithm for portfolio selection, and present favorable numerical results with financial data.
非平稳市场中的投资组合选择
我们把投资组合选择任务看作是一个时间序列预测问题。在每一个时间步,我们都获得了一系列资产的价格,并被要求根据历史价格回报,在这些资产之间配置我们的财富,目标是实现资产的最大化。我们假设这些收益是一般非平稳随机过程的实现,并且只假设它们在短时间尺度上没有显著变化。我们遵循一种统计学习方法,在这种方法中,我们对非平稳随机过程的泛化误差进行了限制,使用了非平稳随机过程的大数统一定律的类似物。随机变量。我们使用学习边界来制定投资组合选择的优化算法,并在金融数据中给出了良好的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信