Sparse, Mean Reverting Portfolio Selection Using Simulated Annealing

IF 0.3 Q4 BUSINESS, FINANCE
N. Fogarasi, J. Levendovszky
{"title":"Sparse, Mean Reverting Portfolio Selection Using Simulated Annealing","authors":"N. Fogarasi, J. Levendovszky","doi":"10.3233/AF-13026","DOIUrl":null,"url":null,"abstract":"We study the problem of finding sparse, mean reverting portfolios based on multivariate historical time series. After mapping the optimal portfolio selection problem into a generalized eigenvalue problem, we propose a new optimization approach based on the use of simulated annealing. This new method ensures that the cardinality constraint is automatically satisfied in each step of the optimization by embedding the constraint into the iterative neighbor selection function. We empirically demonstrate that the method produces better mean reversion coefficients than other heuristic methods, but also show that this does not necessarily result in higher profits during convergence trading. This implies that more complex objective functions should be developed for the problem, which can also be optimized under cardinality constraints using the proposed approach.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-13026","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-13026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 19

Abstract

We study the problem of finding sparse, mean reverting portfolios based on multivariate historical time series. After mapping the optimal portfolio selection problem into a generalized eigenvalue problem, we propose a new optimization approach based on the use of simulated annealing. This new method ensures that the cardinality constraint is automatically satisfied in each step of the optimization by embedding the constraint into the iterative neighbor selection function. We empirically demonstrate that the method produces better mean reversion coefficients than other heuristic methods, but also show that this does not necessarily result in higher profits during convergence trading. This implies that more complex objective functions should be developed for the problem, which can also be optimized under cardinality constraints using the proposed approach.
基于模拟退火的稀疏均值回归投资组合选择
我们研究了基于多元历史时间序列的稀疏均值回归投资组合问题。在将最优投资组合问题转化为广义特征值问题的基础上,提出了一种基于模拟退火的优化方法。该方法通过将基数约束嵌入到迭代邻居选择函数中,保证了在优化的每一步都能自动满足基数约束。我们通过经验证明,该方法比其他启发式方法产生更好的均值回归系数,但也表明这并不一定导致收敛交易期间更高的利润。这意味着应该为该问题开发更复杂的目标函数,这些目标函数也可以使用所提出的方法在基数约束下进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信