M. Sheykholeslami, M. Allahdadi, M. Zeighami, M. Ghodsi
{"title":"Study of Acoustic Attenuation Trends in Permendur 49 Magnetostrictive Material","authors":"M. Sheykholeslami, M. Allahdadi, M. Zeighami, M. Ghodsi","doi":"10.32548/10.32548/2022.me-04229","DOIUrl":null,"url":null,"abstract":"The mechanical properties of ferromagnetic materials change when the magnetization level of these materials changes. This phenomenon occurs due to magnetostriction. The change in direction of the magnetic domains is the reason for magnetostriction. In this paper, we hypothesize that the amount of acoustic attenuation in ferromagnetic materials depends on their magnetization level. To prove this hypothesis, a numerical approach is employed and the results compared to previous results in the literature. Permendur, an iron-cobalt alloy that exhibits a large magnetostriction effect, is used for the simulation. The results of the numerical study show that ultrasonic reflection and transmission coefficients in Permendur change in response to changes in the external magnetic field. A comparison between these numerical results and experimental results in the literature allows us to determine the changes in acoustic attenuation due to the magnetic field. The results show that there is an increasing trend at first, and then a decreasing trend, between acoustic absorption attenuation and increasing external magnetic field. This approach would be useful in ultrasonic testing of ferromagnetic materials when the reflected echoes are not detectable due to attenuation.The mechanical properties of ferromagnetic materials change when the magnetization level of these materials changes. This phenomenon occurs due to magnetostriction. The change in direction of the magnetic domains is the reason for magnetostriction. In this paper, we hypothesize that the amount of acoustic attenuation in ferromagnetic materials depends on their magnetization level. To prove this hypothesis, a numerical approach is employed and the results compared to previous results in the literature. Permendur, an iron-cobalt alloy that exhibits a large magnetostriction effect, is used for the simulation. The results of the numerical study show that ultrasonic reflection and transmission coefficients in Permendur change in response to changes in the external magnetic field. A comparison between these numerical results and experimental results in the literature allows us to determine the changes in acoustic attenuation due to the magnetic field. The results show that there is an increasing trend at first, and then a decreasing trend, between acoustic absorption attenuation and increasing external magnetic field. This approach would be useful in ultrasonic testing of ferromagnetic materials when the reflected echoes are not detectable due to attenuation.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/10.32548/2022.me-04229","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties of ferromagnetic materials change when the magnetization level of these materials changes. This phenomenon occurs due to magnetostriction. The change in direction of the magnetic domains is the reason for magnetostriction. In this paper, we hypothesize that the amount of acoustic attenuation in ferromagnetic materials depends on their magnetization level. To prove this hypothesis, a numerical approach is employed and the results compared to previous results in the literature. Permendur, an iron-cobalt alloy that exhibits a large magnetostriction effect, is used for the simulation. The results of the numerical study show that ultrasonic reflection and transmission coefficients in Permendur change in response to changes in the external magnetic field. A comparison between these numerical results and experimental results in the literature allows us to determine the changes in acoustic attenuation due to the magnetic field. The results show that there is an increasing trend at first, and then a decreasing trend, between acoustic absorption attenuation and increasing external magnetic field. This approach would be useful in ultrasonic testing of ferromagnetic materials when the reflected echoes are not detectable due to attenuation.The mechanical properties of ferromagnetic materials change when the magnetization level of these materials changes. This phenomenon occurs due to magnetostriction. The change in direction of the magnetic domains is the reason for magnetostriction. In this paper, we hypothesize that the amount of acoustic attenuation in ferromagnetic materials depends on their magnetization level. To prove this hypothesis, a numerical approach is employed and the results compared to previous results in the literature. Permendur, an iron-cobalt alloy that exhibits a large magnetostriction effect, is used for the simulation. The results of the numerical study show that ultrasonic reflection and transmission coefficients in Permendur change in response to changes in the external magnetic field. A comparison between these numerical results and experimental results in the literature allows us to determine the changes in acoustic attenuation due to the magnetic field. The results show that there is an increasing trend at first, and then a decreasing trend, between acoustic absorption attenuation and increasing external magnetic field. This approach would be useful in ultrasonic testing of ferromagnetic materials when the reflected echoes are not detectable due to attenuation.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.