ON SPECTRAL STABILITY PROBLEM FOR A PAIR OF SELF-ADJOINT ELLIPTIC DIFFERENTIAL OPERATORS ON BOUNDED OPEN SETS

IF 0.6 Q3 MATHEMATICS
V. Burenkov, B.Th. Tuyen
{"title":"ON SPECTRAL STABILITY PROBLEM FOR A PAIR OF SELF-ADJOINT ELLIPTIC DIFFERENTIAL OPERATORS ON BOUNDED OPEN SETS","authors":"V. Burenkov, B.Th. Tuyen","doi":"10.32523/2077-9879-2019-10-3-84-88","DOIUrl":null,"url":null,"abstract":"where H and M are self-adjoint elliptic differential operators of orders 2k, 2m respectively, where k,m ∈ N,m < k, and Ω is an arbitrary bounded open set in R . Sharp estimates for the variation of the eigenvalues upon domain perturbation will be presented. This work was supported by the grants of the Russian Science Foundation (project no. 19-11-00087) and of the Russian Foundation for Basic Research (project no. 18-51-06005). Based on joint work with Tamara Tararykova and Bien Thanh Tuyen.","PeriodicalId":44248,"journal":{"name":"Eurasian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2077-9879-2019-10-3-84-88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

where H and M are self-adjoint elliptic differential operators of orders 2k, 2m respectively, where k,m ∈ N,m < k, and Ω is an arbitrary bounded open set in R . Sharp estimates for the variation of the eigenvalues upon domain perturbation will be presented. This work was supported by the grants of the Russian Science Foundation (project no. 19-11-00087) and of the Russian Foundation for Basic Research (project no. 18-51-06005). Based on joint work with Tamara Tararykova and Bien Thanh Tuyen.
有界开集上一对自伴随椭圆微分算子的谱稳定性问题
式中,H、M分别为2k、2m阶的自伴随椭圆微分算子,其中k, M∈N, M < k, Ω为R中的任意有界开集。对特征值在域扰动下的变化将给出尖锐的估计。这项工作得到了俄罗斯科学基金会的资助(项目编号:1)。19-11-00087)和俄罗斯基础研究基金会(项目编号:18-51-06005)。基于与Tamara Tararykova和Bien Thanh Tuyen的联合工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
50.00%
发文量
2
期刊介绍: Publication of carefully selected original re­search papers in all areas of mathematics written by mathematicians first of all from Europe and Asia. However papers by mathematicians from other continents are also welcome. From time to time Eurasian Mathematical Journal will also publish survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信