Geometric Regularity Results on B k α , β -Manifolds, I: Affine Connections

IF 0.2 Q4 MATHEMATICS
Y. Martins, R. J. Biezuner
{"title":"Geometric Regularity Results on B k α , β -Manifolds, I: Affine Connections","authors":"Y. Martins, R. J. Biezuner","doi":"10.31392/mfat-npu26_3.2021.05","DOIUrl":null,"url":null,"abstract":"In this paper we consider the existence problem of affine connections on C-manifolds M whose coefficients are as regular as one needs. We show that if M admits a suitable subatlas, meaning a B α,β-structure for a certain presheaf of Fréchet spaces B and for certain functions α and β, then the existence of such regular connections can be established. It is also proved that if the B α,β-structure is actually nice (in the sense of [1]), then a multiplicity result can also be obtained by means of Thom’s transversality arguments.","PeriodicalId":44325,"journal":{"name":"Methods of Functional Analysis and Topology","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Functional Analysis and Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/mfat-npu26_3.2021.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the existence problem of affine connections on C-manifolds M whose coefficients are as regular as one needs. We show that if M admits a suitable subatlas, meaning a B α,β-structure for a certain presheaf of Fréchet spaces B and for certain functions α and β, then the existence of such regular connections can be established. It is also proved that if the B α,β-structure is actually nice (in the sense of [1]), then a multiplicity result can also be obtained by means of Thom’s transversality arguments.
B k α, β -流形的几何正则性结果,I:仿射连接
本文研究系数正则的c流形M上仿射连接的存在性问题。我们证明了如果M允许一个合适的子集,即一个B α,β-结构,对于一定的fr空间B和函数α,β,则可以建立这样的正则连接的存在性。还证明了如果B α,β-结构实际上是好的(在[1]意义上),那么利用Thom的横截性论证也可以得到多重性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed arXiv overlay journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信