Fanyuan Yu, Lin Yao, Feifei Li, Chenglin Wang, Ling Ye
{"title":"Releasing YAP dysfunction-caused replicative toxicity rejuvenates mesenchymal stem cells","authors":"Fanyuan Yu, Lin Yao, Feifei Li, Chenglin Wang, Ling Ye","doi":"10.1111/acel.13913","DOIUrl":null,"url":null,"abstract":"Hippo‐independent YAP dysfunction has been demonstrated to cause chronological aging of stromal cells by impairing the integrity of nuclear envelope (NE). In parallel with this report, we uncover that YAP activity also controls another type of cellular senescence, the replicative senescence in in vitro expansion of mesenchymal stromal cells (MSCs), but this event is Hippo phosphorylation‐dependent, and there exist another NE integrity‐independent downstream mechanisms of YAP. Specifically, Hippo phosphorylation causes reduced nuclear/active YAP and then decreases the level of YAP protein in the proceeding of replicative senescence. YAP/TEAD governs RRM2 expression to release replicative toxicity (RT) via licensing G1/S transition. Besides, YAP controls the core transcriptomics of RT to delay the onset of genome instability and enhances DNA damage response/repair. Hippo‐off mutations of YAP (YAPS127A/S381A) satisfactorily release RT via maintaining cell cycle and reducing genome instability, finally rejuvenating MSCs and restoring their regenerative capabilities without risks of tumorigenesis.","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 9","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13913","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.13913","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hippo‐independent YAP dysfunction has been demonstrated to cause chronological aging of stromal cells by impairing the integrity of nuclear envelope (NE). In parallel with this report, we uncover that YAP activity also controls another type of cellular senescence, the replicative senescence in in vitro expansion of mesenchymal stromal cells (MSCs), but this event is Hippo phosphorylation‐dependent, and there exist another NE integrity‐independent downstream mechanisms of YAP. Specifically, Hippo phosphorylation causes reduced nuclear/active YAP and then decreases the level of YAP protein in the proceeding of replicative senescence. YAP/TEAD governs RRM2 expression to release replicative toxicity (RT) via licensing G1/S transition. Besides, YAP controls the core transcriptomics of RT to delay the onset of genome instability and enhances DNA damage response/repair. Hippo‐off mutations of YAP (YAPS127A/S381A) satisfactorily release RT via maintaining cell cycle and reducing genome instability, finally rejuvenating MSCs and restoring their regenerative capabilities without risks of tumorigenesis.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.