Influence of Blade Vibration on Part-Span Rotating Stall

Q4 Engineering
F. Zhao, J. Dodds, M. Vahdati
{"title":"Influence of Blade Vibration on Part-Span Rotating Stall","authors":"F. Zhao, J. Dodds, M. Vahdati","doi":"10.33737/jgpps/130873","DOIUrl":null,"url":null,"abstract":"This paper presents the interaction between blade vibration and part-span rotating stall in a multi-stage high speed compressor. Unsteady aerodynamic and aeroelastic simulations were conducted using URANS CFD. Steady state computations showed short length scale disturbances formed local to the tip of a front stage rotor. Using a full annulus model, these disturbances were shown to coalesce into flow structures rotating around the annulus at approximately 76% of the shaft rotational speed. Natural evolution of the rotating stall did not result in a coherent spatial pattern. Sensitivity studies showed that operating point and tip clearance have significant impact on the developed state of rotating stall. Subsequent analyses carried out with prescribed rotor blade vibration showed a spatial ‘lock-in’ event where the circumferential order of the part-span rotating stall shifted to match that induced by the vibration mode. Moreover, in contrast to its natural form in the absence of vibration, the fully developed rotating stall showed a coherent stall signal. More importantly, it was found that numerical boundary conditions such as mixing plane and sliding planes can significantly influence the outcome of prediction.","PeriodicalId":38948,"journal":{"name":"International Journal of Gas Turbine, Propulsion and Power Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Gas Turbine, Propulsion and Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/130873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the interaction between blade vibration and part-span rotating stall in a multi-stage high speed compressor. Unsteady aerodynamic and aeroelastic simulations were conducted using URANS CFD. Steady state computations showed short length scale disturbances formed local to the tip of a front stage rotor. Using a full annulus model, these disturbances were shown to coalesce into flow structures rotating around the annulus at approximately 76% of the shaft rotational speed. Natural evolution of the rotating stall did not result in a coherent spatial pattern. Sensitivity studies showed that operating point and tip clearance have significant impact on the developed state of rotating stall. Subsequent analyses carried out with prescribed rotor blade vibration showed a spatial ‘lock-in’ event where the circumferential order of the part-span rotating stall shifted to match that induced by the vibration mode. Moreover, in contrast to its natural form in the absence of vibration, the fully developed rotating stall showed a coherent stall signal. More importantly, it was found that numerical boundary conditions such as mixing plane and sliding planes can significantly influence the outcome of prediction.
叶片振动对部分跨旋转失速的影响
本文研究了多级高速压气机叶片振动与部分跨度旋转失速的相互作用。采用URANS CFD进行了非定常气动和气动弹性模拟。稳态计算表明,前级转子尖端局部形成了短长度尺度的扰动。使用一个完整的环空模型,这些干扰被显示成围绕环空旋转的流动结构,其速度约为轴转速的76%。旋转失速的自然演变并没有导致连贯的空间格局。灵敏度研究表明,工作点和叶尖间隙对旋转失速发展状态有显著影响。随后的分析显示了一个空间“锁定”事件,即部分跨度旋转失速的周向顺序发生了变化,与振动模式引起的失速相匹配。此外,相对于其在无振动状态下的自然形态,充分发展的旋转失速表现出连贯的失速信号。更重要的是,发现混合面和滑动面等数值边界条件对预测结果有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信