{"title":"Expression analysis of new Metallothionein2-like protein under mercury stress in tomato seedling","authors":"Takeshi Nagata","doi":"10.3117/PLANTROOT.8.72","DOIUrl":null,"url":null,"abstract":"Plants including tomato produce several kinds of chelator proteins such as metallothioneins (MTs) for protection against Hg 2+ toxicity. However, the mechanism of protection from Hg 2+ is not perfectly clear. Hg 2+ content subsequently was plateaued from days 1 to 7. Cell death and DNA digestion were not observed in the primary root in the presence of Hg 2+ over the 7 days. The predicted protein sequences of 5 tomato type 2 MT-like (MT2-like) proteins were compared. The coding sequences of accession number Z68185 had no Cys-Cys motif in the N-terminal. However, the Z68185 cDNA genetic recombinant showed high resistance to Hg 2+ in bacteria. In tomato, the expression was observed in the roots, but not in the leaves or stems. mRNA of the MT2-like protein was measured in tomato seedlings exposed to 1 μM Hg 2+ . The expression level did not increase until day 3, but increased expression was observed after day 5. These results suggest that new Metallothionein2-like protein express in root specific and it may trap mercury. Our results indicate that functional identification of an MT2-like protein will be useful for molecular breeding designed to improve plant tolerance to Hg 2+ .","PeriodicalId":20205,"journal":{"name":"Plant Root","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3117/PLANTROOT.8.72","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Root","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3117/PLANTROOT.8.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
Plants including tomato produce several kinds of chelator proteins such as metallothioneins (MTs) for protection against Hg 2+ toxicity. However, the mechanism of protection from Hg 2+ is not perfectly clear. Hg 2+ content subsequently was plateaued from days 1 to 7. Cell death and DNA digestion were not observed in the primary root in the presence of Hg 2+ over the 7 days. The predicted protein sequences of 5 tomato type 2 MT-like (MT2-like) proteins were compared. The coding sequences of accession number Z68185 had no Cys-Cys motif in the N-terminal. However, the Z68185 cDNA genetic recombinant showed high resistance to Hg 2+ in bacteria. In tomato, the expression was observed in the roots, but not in the leaves or stems. mRNA of the MT2-like protein was measured in tomato seedlings exposed to 1 μM Hg 2+ . The expression level did not increase until day 3, but increased expression was observed after day 5. These results suggest that new Metallothionein2-like protein express in root specific and it may trap mercury. Our results indicate that functional identification of an MT2-like protein will be useful for molecular breeding designed to improve plant tolerance to Hg 2+ .
期刊介绍:
Plant Root publishes original papers, either theoretical or experimental, that provide novel insights into plant roots. The Journal’s subjects include, but are not restricted to, anatomy and morphology, cellular and molecular biology, biochemistry, physiology, interactions with soil, mineral nutrients, water, symbionts and pathogens, food culture, together with ecological, genetic and methodological aspects related to plant roots and rhizosphere. Work at any scale, from the molecular to the community level, is welcomed.