Keina Motegi, Yoshihiro Kobae, Emi Kameoka, Mikoto Kaneko, T. Hatanaka, S. Hobara
{"title":"Vertical distribution of tree fine roots in the tephra profile with two buried humic soil layers","authors":"Keina Motegi, Yoshihiro Kobae, Emi Kameoka, Mikoto Kaneko, T. Hatanaka, S. Hobara","doi":"10.3117/plantroot.15.60","DOIUrl":null,"url":null,"abstract":"Surface humic soils, where fine roots are mainly distributed, can be accidentally buried due to coverage by deposits such as volcanic ash. This buried humic soil may influence the vertical distribution of fine roots because soil organic matter strongly affects soil functions. However, fine root distributions in buried humic soils are little understood. In order to elucidate the effects of buried humic soils on fine root distribution, we investigated fine root biomass and soil characteristics in a soil profile down to 3.3 m with two buried humic soils formed by tephra in Tomakomai, Hokkaido, Japan. In this profile, fine root biomass decreased with soil depth, but increased in buried humic soils that had higher soil total carbon (C) content and higher fine soil ratio than buried nonhumic soils. These results lead us to surmise a preferential development of active fine roots in buried humic soils rich in organic C rather than nonhumic soils.","PeriodicalId":20205,"journal":{"name":"Plant Root","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Root","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3117/plantroot.15.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Surface humic soils, where fine roots are mainly distributed, can be accidentally buried due to coverage by deposits such as volcanic ash. This buried humic soil may influence the vertical distribution of fine roots because soil organic matter strongly affects soil functions. However, fine root distributions in buried humic soils are little understood. In order to elucidate the effects of buried humic soils on fine root distribution, we investigated fine root biomass and soil characteristics in a soil profile down to 3.3 m with two buried humic soils formed by tephra in Tomakomai, Hokkaido, Japan. In this profile, fine root biomass decreased with soil depth, but increased in buried humic soils that had higher soil total carbon (C) content and higher fine soil ratio than buried nonhumic soils. These results lead us to surmise a preferential development of active fine roots in buried humic soils rich in organic C rather than nonhumic soils.
期刊介绍:
Plant Root publishes original papers, either theoretical or experimental, that provide novel insights into plant roots. The Journal’s subjects include, but are not restricted to, anatomy and morphology, cellular and molecular biology, biochemistry, physiology, interactions with soil, mineral nutrients, water, symbionts and pathogens, food culture, together with ecological, genetic and methodological aspects related to plant roots and rhizosphere. Work at any scale, from the molecular to the community level, is welcomed.