Younes Tamissa, F. Charif, F. Kadri, A. Benchabane
{"title":"Pattern recognition and diagnosis of short and open circuit faults inverter in induction motor drive using neural networks","authors":"Younes Tamissa, F. Charif, F. Kadri, A. Benchabane","doi":"10.30765/er.1949","DOIUrl":null,"url":null,"abstract":"Nowadays, feeding induction motors with voltage source inverters under faulty conditions is a major challenge. For this reason, electrical systems must be well thought out to provide good diagnostics for these elements. Consequently, the early detection of faults is very important to establish strategies that allow us to control the operation and take preventive measures to avoid frequent failures. Our aim in this paper is to train multilayer neural networks using features extracted from currents and voltages measurements to detect and classify open and short-circuit switch faults in source voltage inverters. Simulation results show that instead of using several types of features extracted from measurements of several signal cycles as in previous works, a two-component feature obtained from one cycle is sufficient to obtain an excellent accuracy. The normalized mean Clark currents and the power spectrum using the fast Fourier transform have been used as features for open switches and short-circuit faults respectively.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.1949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, feeding induction motors with voltage source inverters under faulty conditions is a major challenge. For this reason, electrical systems must be well thought out to provide good diagnostics for these elements. Consequently, the early detection of faults is very important to establish strategies that allow us to control the operation and take preventive measures to avoid frequent failures. Our aim in this paper is to train multilayer neural networks using features extracted from currents and voltages measurements to detect and classify open and short-circuit switch faults in source voltage inverters. Simulation results show that instead of using several types of features extracted from measurements of several signal cycles as in previous works, a two-component feature obtained from one cycle is sufficient to obtain an excellent accuracy. The normalized mean Clark currents and the power spectrum using the fast Fourier transform have been used as features for open switches and short-circuit faults respectively.
期刊介绍:
Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.