Y. Gao, Y. Zhang, M. Du, F. Lin, W. Jiang, W. Li, F. Li, X. Lv, J. Fang, Z. Jiang
{"title":"Dissolved organic carbon from cultured kelp Saccharina japonica: production, bioavailability, and bacterial degradation rates","authors":"Y. Gao, Y. Zhang, M. Du, F. Lin, W. Jiang, W. Li, F. Li, X. Lv, J. Fang, Z. Jiang","doi":"10.3354/AEI00393","DOIUrl":null,"url":null,"abstract":"Seaweed farming is widely perceived as one of the most environmentally benign types of aquaculture activity. In the past 10 yr, global seaweed production has doubled and reached 31.8 million t. Farmed seaweed also has important functions in local ecosystems. We focus on the production, bioavailability, and bacterial degradation rates of dissolved organic carbon (DOC) from cultured kelp Saccharina japonica. Semi in situ incubations in 2 growing seasons were conducted to estimate DOC production, and laboratory incubations were used to determine bioavailability and decay rates of DOC from cultured kelp. Results showed that DOC production was 6.2-7.0 mg C (g dry wt)-1 d-1 in the growing seasons, and the proportion of DOC in net primary production was 23.7-39.1%. The decomposition rate of DOC was 4 ± 1% d-1 and 9 ± 1% d-1 in January and April, respectively. About 37.8% remained as refractory DOC after 150 d incubation. It was calculated that the total DOC from kelp in Sanggou Bay was approximately 11.3 times of that from phytoplankton for the whole bay (144 km2). Our results suggest that more than half of the bioavailable DOC will be exported out of the bay to potentially support the wider food chain through bacterial uptake. Cultured kelp is therefore an important source of DOC in the embayment, contributes to the coastal DOC pool and provides a potential pathway for carbon dioxide sequestration.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00393","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 15
Abstract
Seaweed farming is widely perceived as one of the most environmentally benign types of aquaculture activity. In the past 10 yr, global seaweed production has doubled and reached 31.8 million t. Farmed seaweed also has important functions in local ecosystems. We focus on the production, bioavailability, and bacterial degradation rates of dissolved organic carbon (DOC) from cultured kelp Saccharina japonica. Semi in situ incubations in 2 growing seasons were conducted to estimate DOC production, and laboratory incubations were used to determine bioavailability and decay rates of DOC from cultured kelp. Results showed that DOC production was 6.2-7.0 mg C (g dry wt)-1 d-1 in the growing seasons, and the proportion of DOC in net primary production was 23.7-39.1%. The decomposition rate of DOC was 4 ± 1% d-1 and 9 ± 1% d-1 in January and April, respectively. About 37.8% remained as refractory DOC after 150 d incubation. It was calculated that the total DOC from kelp in Sanggou Bay was approximately 11.3 times of that from phytoplankton for the whole bay (144 km2). Our results suggest that more than half of the bioavailable DOC will be exported out of the bay to potentially support the wider food chain through bacterial uptake. Cultured kelp is therefore an important source of DOC in the embayment, contributes to the coastal DOC pool and provides a potential pathway for carbon dioxide sequestration.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.