The Malliavin-Stein method for Hawkes functionals

Pub Date : 2021-04-04 DOI:10.30757/alea.v19-52
C. Hillairet, Lorick Huang, Mahmoud Khabou, Anthony Reveillac
{"title":"The Malliavin-Stein method for Hawkes functionals","authors":"C. Hillairet, Lorick Huang, Mahmoud Khabou, Anthony Reveillac","doi":"10.30757/alea.v19-52","DOIUrl":null,"url":null,"abstract":". In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus and Stein’s method to provide general bounds on the Wasserstein distance between the law of functionals of a compound Hawkes process and the one of a Gaussian random variable. To achieve this, we rely on the Poisson imbedding representation of a Hawkes process to provide a Malliavin calculus for the Hawkes processes, and more generally for compound Hawkes processes. As an application, we close a gap in the literature by providing a quantitative Central Limit Theorem","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

. In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus and Stein’s method to provide general bounds on the Wasserstein distance between the law of functionals of a compound Hawkes process and the one of a Gaussian random variable. To achieve this, we rely on the Poisson imbedding representation of a Hawkes process to provide a Malliavin calculus for the Hawkes processes, and more generally for compound Hawkes processes. As an application, we close a gap in the literature by providing a quantitative Central Limit Theorem
分享
查看原文
Hawkes泛函的Malliavin-Stein方法
。本文根据Nourdin-Peccati的方法,结合Malliavin演算和Stein的方法,给出了复合Hawkes过程泛函律与高斯随机变量泛函律之间的Wasserstein距离的一般界。为了实现这一点,我们依靠Hawkes过程的泊松嵌入表示来为Hawkes过程提供Malliavin演算,更一般地说,为复合Hawkes过程提供Malliavin演算。作为一种应用,我们通过提供一个定量的中心极限定理来填补文献中的空白
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信