C. Hillairet, Lorick Huang, Mahmoud Khabou, Anthony Reveillac
{"title":"The Malliavin-Stein method for Hawkes functionals","authors":"C. Hillairet, Lorick Huang, Mahmoud Khabou, Anthony Reveillac","doi":"10.30757/alea.v19-52","DOIUrl":null,"url":null,"abstract":". In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus and Stein’s method to provide general bounds on the Wasserstein distance between the law of functionals of a compound Hawkes process and the one of a Gaussian random variable. To achieve this, we rely on the Poisson imbedding representation of a Hawkes process to provide a Malliavin calculus for the Hawkes processes, and more generally for compound Hawkes processes. As an application, we close a gap in the literature by providing a quantitative Central Limit Theorem","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
. In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus and Stein’s method to provide general bounds on the Wasserstein distance between the law of functionals of a compound Hawkes process and the one of a Gaussian random variable. To achieve this, we rely on the Poisson imbedding representation of a Hawkes process to provide a Malliavin calculus for the Hawkes processes, and more generally for compound Hawkes processes. As an application, we close a gap in the literature by providing a quantitative Central Limit Theorem