{"title":"On the Passage Time Geometry of the\nLast Passage Percolation Problem","authors":"Tom Alberts, E. Cator","doi":"10.30757/alea.v18-10","DOIUrl":null,"url":null,"abstract":"We analyze the geometrical structure of the passage times in the last passage percolation model. Viewing the passage time as a piecewise linear function of the weights we determine the domains of the various pieces, which are the subsets of the weight space that make a given path the longest one. We focus on the case when all weights are assumed to be positive, and as a result each domain is a pointed polyhedral cone. We determine the extreme rays, facets, and two-dimensional faces of each cone, and also review a well-known simplicial decomposition of the maximal cones via the so-called order cone. All geometric properties are derived using arguments phrased in terms of the last passage model itself. Our motivation is to understand path probabilities of the extremal corner paths on rectangles in Z, but all of our arguments apply to general, finite partially ordered sets.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v18-10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
We analyze the geometrical structure of the passage times in the last passage percolation model. Viewing the passage time as a piecewise linear function of the weights we determine the domains of the various pieces, which are the subsets of the weight space that make a given path the longest one. We focus on the case when all weights are assumed to be positive, and as a result each domain is a pointed polyhedral cone. We determine the extreme rays, facets, and two-dimensional faces of each cone, and also review a well-known simplicial decomposition of the maximal cones via the so-called order cone. All geometric properties are derived using arguments phrased in terms of the last passage model itself. Our motivation is to understand path probabilities of the extremal corner paths on rectangles in Z, but all of our arguments apply to general, finite partially ordered sets.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.