Functional calculus of Laplace transform type on non-doubling parabolic manifolds with ends

Pub Date : 2021-05-26 DOI:10.2969/JMSJ/83348334
Hong Chuong Doan
{"title":"Functional calculus of Laplace transform type on non-doubling parabolic manifolds with ends","authors":"Hong Chuong Doan","doi":"10.2969/JMSJ/83348334","DOIUrl":null,"url":null,"abstract":"Let M be a non-doubling parabolic manifold with ends and L a non-negative self-adjoint operator on L2(M) which satisfies a suitable heat kernel upper bound named the upper bound of Gaussian type. These operators include the Schrödinger operators L = ∆ + V where ∆ is the Laplace-Beltrami operator and V is an arbitrary non-negative potential. This paper will investigate the behaviour of the Poisson semi-group kernels of L together with its time derivatives and then apply them to obtain the weak type (1, 1) estimate of the functional calculus of Laplace transform type of √ L which is defined by M( √ L)f(x) := ́∞ 0 [√ Le−t √ Lf(x) ] m(t)dt where m(t) is a bounded function on [0,∞). In the setting of our study, both doubling condition of the measure on M and the smoothness of the operators’ kernels are missing. The purely imaginary power Lis, s ∈ R, is a special case of our result and an example of weak type (1, 1) estimates of a singular integral with non-smooth kernels on non-doubling spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/83348334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let M be a non-doubling parabolic manifold with ends and L a non-negative self-adjoint operator on L2(M) which satisfies a suitable heat kernel upper bound named the upper bound of Gaussian type. These operators include the Schrödinger operators L = ∆ + V where ∆ is the Laplace-Beltrami operator and V is an arbitrary non-negative potential. This paper will investigate the behaviour of the Poisson semi-group kernels of L together with its time derivatives and then apply them to obtain the weak type (1, 1) estimate of the functional calculus of Laplace transform type of √ L which is defined by M( √ L)f(x) := ́∞ 0 [√ Le−t √ Lf(x) ] m(t)dt where m(t) is a bounded function on [0,∞). In the setting of our study, both doubling condition of the measure on M and the smoothness of the operators’ kernels are missing. The purely imaginary power Lis, s ∈ R, is a special case of our result and an example of weak type (1, 1) estimates of a singular integral with non-smooth kernels on non-doubling spaces.
分享
查看原文
带端非倍抛物流形拉普拉斯变换型的泛函演算
设M为带端点的非加倍抛物流形,L为L2(M)上的非负自伴随算子,该算子满足一个合适的热核上界,称为高斯型上界。这些算子包括Schrödinger算子L =∆+ V,其中∆是拉普拉斯-贝尔特拉米算子,V是任意的非负势。本文将研究L的泊松半群核及其时间导数的性质,并应用它们得到√L的拉普拉斯变换型泛函演算的弱类型(1,1)估计,其定义为M(√L)f(x):= n∞0[√Le−t√Lf(x)] M(t)dt,其中M(t)是[0,∞)上的有界函数。在我们的研究设置中,缺少M上测度的加倍条件和算子核的平滑性。s∈R的纯虚数幂Lis是我们的结果的一个特例,也是非倍空间上非光滑核奇异积分的弱型(1,1)估计的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信