Functional calculus of Laplace transform type on non-doubling parabolic manifolds with ends

IF 0.7 4区 数学 Q2 MATHEMATICS
Hong Chuong Doan
{"title":"Functional calculus of Laplace transform type on non-doubling parabolic manifolds with ends","authors":"Hong Chuong Doan","doi":"10.2969/JMSJ/83348334","DOIUrl":null,"url":null,"abstract":"Let M be a non-doubling parabolic manifold with ends and L a non-negative self-adjoint operator on L2(M) which satisfies a suitable heat kernel upper bound named the upper bound of Gaussian type. These operators include the Schrödinger operators L = ∆ + V where ∆ is the Laplace-Beltrami operator and V is an arbitrary non-negative potential. This paper will investigate the behaviour of the Poisson semi-group kernels of L together with its time derivatives and then apply them to obtain the weak type (1, 1) estimate of the functional calculus of Laplace transform type of √ L which is defined by M( √ L)f(x) := ́∞ 0 [√ Le−t √ Lf(x) ] m(t)dt where m(t) is a bounded function on [0,∞). In the setting of our study, both doubling condition of the measure on M and the smoothness of the operators’ kernels are missing. The purely imaginary power Lis, s ∈ R, is a special case of our result and an example of weak type (1, 1) estimates of a singular integral with non-smooth kernels on non-doubling spaces.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":"-1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/83348334","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let M be a non-doubling parabolic manifold with ends and L a non-negative self-adjoint operator on L2(M) which satisfies a suitable heat kernel upper bound named the upper bound of Gaussian type. These operators include the Schrödinger operators L = ∆ + V where ∆ is the Laplace-Beltrami operator and V is an arbitrary non-negative potential. This paper will investigate the behaviour of the Poisson semi-group kernels of L together with its time derivatives and then apply them to obtain the weak type (1, 1) estimate of the functional calculus of Laplace transform type of √ L which is defined by M( √ L)f(x) := ́∞ 0 [√ Le−t √ Lf(x) ] m(t)dt where m(t) is a bounded function on [0,∞). In the setting of our study, both doubling condition of the measure on M and the smoothness of the operators’ kernels are missing. The purely imaginary power Lis, s ∈ R, is a special case of our result and an example of weak type (1, 1) estimates of a singular integral with non-smooth kernels on non-doubling spaces.
带端非倍抛物流形拉普拉斯变换型的泛函演算
设M为带端点的非加倍抛物流形,L为L2(M)上的非负自伴随算子,该算子满足一个合适的热核上界,称为高斯型上界。这些算子包括Schrödinger算子L =∆+ V,其中∆是拉普拉斯-贝尔特拉米算子,V是任意的非负势。本文将研究L的泊松半群核及其时间导数的性质,并应用它们得到√L的拉普拉斯变换型泛函演算的弱类型(1,1)估计,其定义为M(√L)f(x):= n∞0[√Le−t√Lf(x)] M(t)dt,其中M(t)是[0,∞)上的有界函数。在我们的研究设置中,缺少M上测度的加倍条件和算子核的平滑性。s∈R的纯虚数幂Lis是我们的结果的一个特例,也是非倍空间上非光滑核奇异积分的弱型(1,1)估计的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信