An interpolation of the generalized duality formula for the Schur multiple zeta values to complex functions

Pub Date : 2022-04-11 DOI:10.2969/jmsj/89978997
Maki Nakasuji, Yasuo Ohno, Wataru Takeda
{"title":"An interpolation of the generalized duality formula for the Schur multiple zeta values to complex functions","authors":"Maki Nakasuji, Yasuo Ohno, Wataru Takeda","doi":"10.2969/jmsj/89978997","DOIUrl":null,"url":null,"abstract":"One of the important research subjects in the study of multiple zeta functions is to clarify the linear relations and functional equations among them. The Schur multiple zeta functions are a generalization of the multiple zeta functions of Euler-Zagier type. Among many relations, the duality formula and its generalization are important families for both Euler-Zagier type and Schur type multiple zeta values. In this paper, following the method of previous works for multiple zeta values of Euler-Zagier type, we give an interpolation of the sums in the generalized duality formula, called Ohno relation, for Schur multiple zeta values. Moreover, we prove that the Ohno relation for Schur multiple zeta values is valid for complex numbers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/89978997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the important research subjects in the study of multiple zeta functions is to clarify the linear relations and functional equations among them. The Schur multiple zeta functions are a generalization of the multiple zeta functions of Euler-Zagier type. Among many relations, the duality formula and its generalization are important families for both Euler-Zagier type and Schur type multiple zeta values. In this paper, following the method of previous works for multiple zeta values of Euler-Zagier type, we give an interpolation of the sums in the generalized duality formula, called Ohno relation, for Schur multiple zeta values. Moreover, we prove that the Ohno relation for Schur multiple zeta values is valid for complex numbers.
分享
查看原文
复函数的Schur多重zeta值的广义对偶公式的插值
阐明多重ζ函数之间的线性关系和函数方程是研究多重ζ函数的重要课题之一。Schur多重zeta函数是对Euler-Zagier型多重zeta函数的推广。在众多关系中,对偶公式及其推广是Euler-Zagier型和Schur型多重zeta值的重要族。本文根据前人研究Euler-Zagier型多重zeta值的方法,对Schur多重zeta值的广义对偶公式Ohno关系中的和进行插值。此外,我们还证明了Schur多重zeta值的Ohno关系对复数是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信