On the class groups of certain imaginary cyclic fields of 2-power degree

Pub Date : 2022-05-13 DOI:10.2969/jmsj/86438643
H. Ichimura, Hiroki Sumida-Takahashi
{"title":"On the class groups of certain imaginary cyclic fields of 2-power degree","authors":"H. Ichimura, Hiroki Sumida-Takahashi","doi":"10.2969/jmsj/86438643","DOIUrl":null,"url":null,"abstract":"Let p be an odd prime number and 2e+1 be the highest power of 2 dividing p − 1. For 0 ≤ n ≤ e, let kn be the real cyclic field of conductor p and degree 2n. For a certain imaginary quadratic field L0, we put Ln = L0kn. For 0 ≤ n ≤ e − 1, let Fn be the imaginary quadratic subextension of the imaginary (2, 2)-extension Ln+1/kn with Fn ̸= Ln. We study the Galois module structure of the 2-part of the ideal class group of the imaginary cyclic field Fn. This generalizes a classical result of Rédei and Reichardt for the case n = 0.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86438643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let p be an odd prime number and 2e+1 be the highest power of 2 dividing p − 1. For 0 ≤ n ≤ e, let kn be the real cyclic field of conductor p and degree 2n. For a certain imaginary quadratic field L0, we put Ln = L0kn. For 0 ≤ n ≤ e − 1, let Fn be the imaginary quadratic subextension of the imaginary (2, 2)-extension Ln+1/kn with Fn ̸= Ln. We study the Galois module structure of the 2-part of the ideal class group of the imaginary cyclic field Fn. This generalizes a classical result of Rédei and Reichardt for the case n = 0.
分享
查看原文
若干2次虚循环域的类群
设p是奇质数2e+1是2除以p - 1的最大幂。当0≤n≤e时,设kn为导体p的实循环场,次数为2n。对于某个虚二次域L0,令Ln = L0kn。当0≤n≤e−1时,设Fn为虚数(2,2)扩展Ln+1/kn的虚二次次扩展,且Fn≤Ln。研究了虚循环域Fn的理想类群的2部分的伽罗瓦模结构。这推广了rsamdei和Reichardt在n = 0情况下的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信