Tunability of Half Cycle Cutoff Harmonics with Inhomogeneously Enhanced Laser Pulse

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Atoms Pub Date : 2023-08-18 DOI:10.3390/atoms11080113
A. Mandal
{"title":"Tunability of Half Cycle Cutoff Harmonics with Inhomogeneously Enhanced Laser Pulse","authors":"A. Mandal","doi":"10.3390/atoms11080113","DOIUrl":null,"url":null,"abstract":"For homogeneous driving, half cycle harmonics and its corresponding half cycle cutoff (HCO) show prominent spectral features, allowing one to produce an isolated attosecond pulse with suitable filtering, or vice versa the retrieval of the driving pulse itself. The temporal profile and spatial dependence of the inhomogeneously enhanced field are two important factors that determine the high harmonic generation (HHG) near a plasmonic nanostructure. This leads us to the question of how the HHG spectra and, in particular, the corresponding half cycle harmonics modify with different types of inhomogeneously enhanced fields. To elucidate this, we have made a comparative study of the HHG in three different types of inhomogeneously enhanced laser pulses by employing the time-dependent Schrödinger equation in one dimension. Within our chosen parameter range, the HCO in cutoff and mid-plateau regimes shift towards higher order with the increase of strength of the inhomogeneity in isotropic case. In anisotropic inhomogeneity, the cutoff HCO shifts towards the higher order but the mid-plateau HCO shifts towards lower order with the increase of strength of inhomogeneity. With increasing carrier envelope phase (CEP), the enhanced HCO in the lower-order harmonic region shifts towards higher orders. This shift is nearly linear from near the above threshold to mid-plateau region and becomes saturated in the near cutoff region. The harmonic spectra is modulo-π periodic for the isotropic inhomogeneity and it is modulo-2π periodic for the anisotropic inhomogeneity. This extension of periodicity increases the tunability of the enhanced HCO harmonics with CEP in the anisotropic inhomogeneity than the CEP tuning of the HCO harmonics in the isotropic inhomogeneity or vice versa the retrieval of CEP.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11080113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For homogeneous driving, half cycle harmonics and its corresponding half cycle cutoff (HCO) show prominent spectral features, allowing one to produce an isolated attosecond pulse with suitable filtering, or vice versa the retrieval of the driving pulse itself. The temporal profile and spatial dependence of the inhomogeneously enhanced field are two important factors that determine the high harmonic generation (HHG) near a plasmonic nanostructure. This leads us to the question of how the HHG spectra and, in particular, the corresponding half cycle harmonics modify with different types of inhomogeneously enhanced fields. To elucidate this, we have made a comparative study of the HHG in three different types of inhomogeneously enhanced laser pulses by employing the time-dependent Schrödinger equation in one dimension. Within our chosen parameter range, the HCO in cutoff and mid-plateau regimes shift towards higher order with the increase of strength of the inhomogeneity in isotropic case. In anisotropic inhomogeneity, the cutoff HCO shifts towards the higher order but the mid-plateau HCO shifts towards lower order with the increase of strength of inhomogeneity. With increasing carrier envelope phase (CEP), the enhanced HCO in the lower-order harmonic region shifts towards higher orders. This shift is nearly linear from near the above threshold to mid-plateau region and becomes saturated in the near cutoff region. The harmonic spectra is modulo-π periodic for the isotropic inhomogeneity and it is modulo-2π periodic for the anisotropic inhomogeneity. This extension of periodicity increases the tunability of the enhanced HCO harmonics with CEP in the anisotropic inhomogeneity than the CEP tuning of the HCO harmonics in the isotropic inhomogeneity or vice versa the retrieval of CEP.
非均匀增强激光脉冲半周截止谐波的可调谐性
对于均匀驱动,半周谐波及其相应的半周截止(HCO)显示出突出的光谱特征,允许人们通过适当的滤波产生孤立的阿秒脉冲,反之亦然,恢复驱动脉冲本身。非均匀增强场的时间分布和空间依赖性是决定等离子体纳米结构附近高谐波产生的两个重要因素。这就引出了HHG谱,特别是相应的半周谐波在不同类型的非均匀增强场下是如何变化的问题。为了说明这一点,我们采用一维时间相关Schrödinger方程对三种不同类型的非均匀增强激光脉冲中的HHG进行了比较研究。在我们选择的参数范围内,在各向同性情况下,截断区和中高原区的HCO随着非均匀性强度的增加而向高阶偏移。在各向异性非均匀性条件下,随着非均匀性强度的增加,截止HCO向高阶偏移,而中平台HCO向低阶偏移。随着载波包络相位(CEP)的增大,低阶谐波区增强的HCO向高阶偏移。从上述阈值附近到高原中部地区,这种变化几乎是线性的,并在近截止区域达到饱和。各向同性非均匀性的谐波谱为模-π周期,各向异性非均匀性的谐波谱为模-2π周期。与CEP调谐各向异性非均匀性中的HCO谐波相比,这种周期性的扩展增加了各向异性非均匀性中增强HCO谐波的可调性,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信