Novel all-fiber-optic technology for control and multi-color probing of neural circuits in freely-moving animals

IF 15.3 1区 物理与天体物理 Q1 OPTICS
Xing Li
{"title":"Novel all-fiber-optic technology for control and multi-color probing of neural circuits in freely-moving animals","authors":"Xing Li","doi":"10.29026/oea.2023.230086","DOIUrl":null,"url":null,"abstract":"All-fiber-optic photometry system based on a multi-branch fiber bundle has achieved, for the first time, simultaneous optogenetic manipulation and dual-color recording of neuronal Ca 2+ or neurotransmitter signals in freely moving animals, providing a powerful tool for comprehensive analysis of neural circuit function and the study of neurological diseases. Li XD. Novel all-fiber-optic technology for control and multi-color probing of neural circuits in freely-moving animals. Opto-Electron Adv 6 , 230086 (2023).","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":"25 1","pages":""},"PeriodicalIF":15.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronic Advances","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.29026/oea.2023.230086","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

All-fiber-optic photometry system based on a multi-branch fiber bundle has achieved, for the first time, simultaneous optogenetic manipulation and dual-color recording of neuronal Ca 2+ or neurotransmitter signals in freely moving animals, providing a powerful tool for comprehensive analysis of neural circuit function and the study of neurological diseases. Li XD. Novel all-fiber-optic technology for control and multi-color probing of neural circuits in freely-moving animals. Opto-Electron Adv 6 , 230086 (2023).
用于自由运动动物神经回路控制和多色探测的新型全光纤技术
基于多支纤维束的全光纤测光系统首次实现了对自由运动动物神经元ca2 +或神经递质信号的同时光遗传操作和双色记录,为神经回路功能的综合分析和神经系统疾病的研究提供了有力的工具。李XD。用于自由运动动物神经回路控制和多色探测的新型全光纤技术。光电学报,6,230086(2023)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.30
自引率
7.10%
发文量
128
期刊介绍: Opto-Electronic Advances (OEA) is a distinguished scientific journal that has made significant strides since its inception in March 2018. Here's a collated summary of its key features and accomplishments: Impact Factor and Ranking: OEA boasts an impressive Impact Factor of 14.1, which positions it within the Q1 quartiles of the Optics category. This high ranking indicates that the journal is among the top 25% of its field in terms of citation impact. Open Access and Peer Review: As an open access journal, OEA ensures that research findings are freely available to the global scientific community, promoting wider dissemination and collaboration. It upholds rigorous academic standards through a peer review process, ensuring the quality and integrity of the published research. Database Indexing: OEA's content is indexed in several prestigious databases, including the Science Citation Index (SCI), Engineering Index (EI), Scopus, Chemical Abstracts (CA), and the Index to Chinese Periodical Articles (ICI). This broad indexing facilitates easy access to the journal's articles by researchers worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信