The determination of Thailand Geoid Model 2017 (TGM2017) from airborne and terrestrial gravimetry

IF 0.8 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Puttipol Dumrongchai, Chawis Srimanee, Nuttanon Duangdee, Jittrakorn Bairaksa
{"title":"The determination of Thailand Geoid Model 2017 (TGM2017) from airborne and terrestrial gravimetry","authors":"Puttipol Dumrongchai, Chawis Srimanee, Nuttanon Duangdee, Jittrakorn Bairaksa","doi":"10.3319/tao.2021.08.23.01","DOIUrl":null,"url":null,"abstract":"The Royal Thai Survey Department and Chiang Mai University developed the Thailand geoid model 2017 (TGM2017) with a 1’ × 1’ grid to support the transformation between Global Navigation satellite System (GNSS) ellipsoid heights and Kolak-1915 vertical datum orthometric heights. TGM2017 was based on Thailand gravimetric geoid model 2017 (THAI17G) and 299 GNSS ellipsoidal heights co-located with Kolak-1915 heights. All terrestrial gravity data used for geoid computation came from the new national gravity network, consisting of 87 absolute and 9929 relative gravity stations at 10 – 25 km intervals, mostly along with existing roads. From 2016 to 2017, airborne gravity surveys were conducted at a 4000m-flight altitude and 10 km along-track spacing to acquire the gravity data over mountainous and inaccessible areas, including coastal and marine areas, at an estimated accuracy of 3.0 mGal. Long-wavelength geoid structure was controlled by the GOCE-EGM2008 combined model (GECO) and the Technical University of Denmark’s global marine gravity model 2013 (DTU13). All gravity data were combined and downward, using least-squares collocation with the residual terrain model reductions from a digital terrain elevation data level 2 (DTED2). THAI17G was determined by multi-band spherical Fast Fourier Transform and converted to TGM2017 with the 38.2cm root-mean-square (rms) fit of 299 GNSS/leveling co-points and a mean offset of 37.0 cm. This value represents the separation between Kolak-1915 and a global mean sea level. The evaluation of TGM2017 at 100 GNSS/leveling checkpoints shows the rms of 4.9 cm, consequently leading to reliable orthometric heights at a 10-cm accuracy level or better.","PeriodicalId":22259,"journal":{"name":"Terrestrial, Atmospheric and Oceanic Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terrestrial, Atmospheric and Oceanic Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3319/tao.2021.08.23.01","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The Royal Thai Survey Department and Chiang Mai University developed the Thailand geoid model 2017 (TGM2017) with a 1’ × 1’ grid to support the transformation between Global Navigation satellite System (GNSS) ellipsoid heights and Kolak-1915 vertical datum orthometric heights. TGM2017 was based on Thailand gravimetric geoid model 2017 (THAI17G) and 299 GNSS ellipsoidal heights co-located with Kolak-1915 heights. All terrestrial gravity data used for geoid computation came from the new national gravity network, consisting of 87 absolute and 9929 relative gravity stations at 10 – 25 km intervals, mostly along with existing roads. From 2016 to 2017, airborne gravity surveys were conducted at a 4000m-flight altitude and 10 km along-track spacing to acquire the gravity data over mountainous and inaccessible areas, including coastal and marine areas, at an estimated accuracy of 3.0 mGal. Long-wavelength geoid structure was controlled by the GOCE-EGM2008 combined model (GECO) and the Technical University of Denmark’s global marine gravity model 2013 (DTU13). All gravity data were combined and downward, using least-squares collocation with the residual terrain model reductions from a digital terrain elevation data level 2 (DTED2). THAI17G was determined by multi-band spherical Fast Fourier Transform and converted to TGM2017 with the 38.2cm root-mean-square (rms) fit of 299 GNSS/leveling co-points and a mean offset of 37.0 cm. This value represents the separation between Kolak-1915 and a global mean sea level. The evaluation of TGM2017 at 100 GNSS/leveling checkpoints shows the rms of 4.9 cm, consequently leading to reliable orthometric heights at a 10-cm accuracy level or better.
泰国大地水准面模型2017 (TGM2017)的航空和地面重力测定
泰国皇家测量部和清迈大学开发了泰国大地水准面模型2017 (TGM2017),该模型具有1 ' × 1 '网格,以支持全球导航卫星系统(GNSS)椭球高度与Kolak-1915垂直基准正交高度之间的转换。TGM2017是基于泰国重力大地水准面模型2017 (thaai17g)和299 GNSS椭球高度与Kolak-1915高度共同定位的。用于大地水准面计算的所有地面重力数据都来自新的国家重力网,该网由87个绝对重力站和9929个相对重力站组成,每隔10 - 25公里,大部分与现有道路一起。2016 - 2017年,在4000米飞行高度和10公里航迹间距上开展了航空重力测量,获取了沿海和海洋等山地和人迹罕至地区的重力数据,估计精度为3.0 mGal。长波大地面线结构由GOCE-EGM2008联合模型(GECO)和丹麦技术大学全球海洋重力模型2013 (DTU13)控制。采用最小二乘配置和数字地形高程数据2 (DTED2)的残差地形模型约简,对所有重力数据进行组合和向下处理。通过多波段球面快速傅里叶变换确定THAI17G,并将其转换为TGM2017, 299个GNSS/水准点的均方根拟合(rms)为38.2cm,平均偏移量为37.0 cm。这个值表示Kolak-1915与全球平均海平面之间的距离。TGM2017在100个GNSS/水准检查点上的评估显示均方根值为4.9 cm,从而导致可靠的正测高度达到10 cm或更高的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
29
审稿时长
4.5 months
期刊介绍: The major publication of the Chinese Geoscience Union (located in Taipei) since 1990, the journal of Terrestrial, Atmospheric and Oceanic Sciences (TAO) publishes bi-monthly scientific research articles, notes, correspondences and reviews in all disciplines of the Earth sciences. It is the amalgamation of the following journals: Papers in Meteorological Research (published by the Meteorological Society of the ROC) since Vol. 12, No. 2 Bulletin of Geophysics (published by the Institute of Geophysics, National Central University) since No. 27 Acta Oceanographica Taiwanica (published by the Institute of Oceanography, National Taiwan University) since Vol. 42.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信