CATALYTIC WET AIR OXIDATION OF TETRACYCLINE WASTEWATER BY MOS2 NANO SHEET AND ITS MECHANISM

IF 0.9 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Chen Chen, T. Cheng, Xiao Zhang, Lei Wang, Mingyue Wen
{"title":"CATALYTIC WET AIR OXIDATION OF TETRACYCLINE WASTEWATER BY MOS2 NANO SHEET AND ITS MECHANISM","authors":"Chen Chen, T. Cheng, Xiao Zhang, Lei Wang, Mingyue Wen","doi":"10.30638/eemj.2023.035","DOIUrl":null,"url":null,"abstract":"In this study, we successfully synthesized MoS2 nano sheets (MNS) using hydrothermal synthesis and employed them as catalysts to degrade tetracycline wastewater in catalytic wet air oxidation (CWAO) system. We used many modern analytical instruments to characterize the synthesized materials, and the characterization results revealed that catalysts displayed a 2D nano sheet morphology. The experimental results of the catalytic wet air oxidation demonstrated that the MoS2 nano sheets effectively facilitated the degradation of tetracycline wastewater. Under the reaction temperature of 130°C, the tetracycline degradation rate was achieved more than 96% after 90mins. Also, the degradation process was conformed to the apparent first-order kinetic equation and Arrhenius equation. In addition, the catalyst maintained excellent degradation performance after recycling usage. The catalytic mechanism studied through DFT (density functional theory) calculation illustrated that under the condition of thermal excitation (105-160°C), MoS2 nano sheet was excited enough electrons and holes to catalyze the degradation of tetracycline wastewater.","PeriodicalId":11685,"journal":{"name":"Environmental Engineering and Management Journal","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Engineering and Management Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.30638/eemj.2023.035","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we successfully synthesized MoS2 nano sheets (MNS) using hydrothermal synthesis and employed them as catalysts to degrade tetracycline wastewater in catalytic wet air oxidation (CWAO) system. We used many modern analytical instruments to characterize the synthesized materials, and the characterization results revealed that catalysts displayed a 2D nano sheet morphology. The experimental results of the catalytic wet air oxidation demonstrated that the MoS2 nano sheets effectively facilitated the degradation of tetracycline wastewater. Under the reaction temperature of 130°C, the tetracycline degradation rate was achieved more than 96% after 90mins. Also, the degradation process was conformed to the apparent first-order kinetic equation and Arrhenius equation. In addition, the catalyst maintained excellent degradation performance after recycling usage. The catalytic mechanism studied through DFT (density functional theory) calculation illustrated that under the condition of thermal excitation (105-160°C), MoS2 nano sheet was excited enough electrons and holes to catalyze the degradation of tetracycline wastewater.
二硫化钼纳米片催化湿式空气氧化四环素废水及其机理
在本研究中,我们成功地采用水热法合成了MoS2纳米片(MNS),并将其作为催化剂用于催化湿式空气氧化(CWAO)系统中降解四环素废水。我们使用许多现代分析仪器对合成的材料进行了表征,表征结果表明催化剂呈现出二维纳米片状形貌。催化湿式空气氧化实验结果表明,二硫化钼纳米片有效促进了四环素废水的降解。在130℃的反应温度下,反应90min后四环素的降解率达到96%以上。降解过程符合表观一级动力学方程和Arrhenius方程。此外,该催化剂在循环使用后仍保持了良好的降解性能。通过DFT(密度泛函理论)计算研究催化机理表明,在热激发(105 ~ 160℃)条件下,MoS2纳米片被激发出足够的电子和空穴,催化降解四环素废水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
36.40%
发文量
0
审稿时长
8.6 months
期刊介绍: Environmental Engineering and Management Journal is an international journal that publishes reviewed original research papers of both experimental and theoretical nature in the following areas: environmental impact assessment; environmental integrated management; risk assessment and management; environmental chemistry; environmental protection technologies (water, air, soil); pollution reduction at source and waste minimization; chemical and biological process engineering; cleaner production, products and services; sensors in environment control; sources of radiation and protection technologies; waste valorization technologies and management; environmental biotechnology; energy and environment; modelling, simulation and optimization for environmental protection; technologies for drinking and industrial water; life cycle assessments of products; environmental strategies and policies; cost-profitt analysis in environmental protection; eco-industry and environmental market; environmental education and sustainable development. Environmental Engineering and Management Journal will publish: original communications describing important new discoveries or further developments in the above-mentioned topics; reviews, mainly of new rapidly developing areas of environmental protection; special themed issues on relevant topics; advertising.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信