Numerical study of various geometries of breakwaters for the installation of floating wind turbines

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Keyvan Esmaeelpour, R. Shafaghat, R. Alamian, R. Bayani
{"title":"Numerical study of various geometries of breakwaters for the installation of floating wind turbines","authors":"Keyvan Esmaeelpour, R. Shafaghat, R. Alamian, R. Bayani","doi":"10.3329/JNAME.V13I1.22866","DOIUrl":null,"url":null,"abstract":"The everyday growing populations all over the world and the necessity of increase in consumption of fossil energies have made the human to discover new energy resources, which are clean, cheap and renewable. Wind energy is one of the renewable energy resources. Considerable wind speed has made settling of wind turbines at sea beneficial and appealing. For this purpose, choosing the appropriate plates to set up wind turbines on the surface of sea is necessary. Regarding the installation condition, by choosing suitable geometry for floating breakwaters, offshore wind turbine can be mounted on them. Suitable geometry of breakwater for multifunctional usage could be selected with analyzing and comparing pressure, force and moment produced by incoming waves. In this article, we implement boundary element method to solve governing differential equations by assuming potential flow. On the other hand, for promoting free surface in each time step, we employed Euler-Lagrangian method. Finally, to find the appropriate geometry for installing the wind turbine on the breakwater, moment and wave profile next to the right and left side of breakwater body are calculated. Among simulated geometries, breakwater with trapezoid geometry which its larger base is placed in the water has more sustainability and it is the most suitable geometry for wind turbine installation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V13I1.22866","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V13I1.22866","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The everyday growing populations all over the world and the necessity of increase in consumption of fossil energies have made the human to discover new energy resources, which are clean, cheap and renewable. Wind energy is one of the renewable energy resources. Considerable wind speed has made settling of wind turbines at sea beneficial and appealing. For this purpose, choosing the appropriate plates to set up wind turbines on the surface of sea is necessary. Regarding the installation condition, by choosing suitable geometry for floating breakwaters, offshore wind turbine can be mounted on them. Suitable geometry of breakwater for multifunctional usage could be selected with analyzing and comparing pressure, force and moment produced by incoming waves. In this article, we implement boundary element method to solve governing differential equations by assuming potential flow. On the other hand, for promoting free surface in each time step, we employed Euler-Lagrangian method. Finally, to find the appropriate geometry for installing the wind turbine on the breakwater, moment and wave profile next to the right and left side of breakwater body are calculated. Among simulated geometries, breakwater with trapezoid geometry which its larger base is placed in the water has more sustainability and it is the most suitable geometry for wind turbine installation.
安装浮式风力发电机用防波堤不同几何形状的数值研究
世界范围内日益增长的人口和化石能源消费增加的必要性促使人类去发现清洁、廉价和可再生的新能源。风能是可再生能源之一。相当大的风速使得在海上安置风力涡轮机是有益的和有吸引力的。为此,选择合适的板在海面上设置风力涡轮机是必要的。在安装条件上,通过选择合适的浮动防波堤几何形状,可以将海上风力发电机安装在浮动防波堤上。通过对来浪产生的压力、力和力矩的分析比较,选择适合多功能使用的防波堤几何形状。本文采用边界元法,在假设势流的条件下求解控制微分方程。另一方面,对于在每个时间步长的自由曲面,我们采用欧拉-拉格朗日方法。最后,计算了防波堤左右两侧的弯矩和波浪剖面,以确定在防波堤上安装风力机的合适几何形状。在模拟的几何形状中,梯形防波堤的底座放置在水中较大,具有更强的可持续性,是最适合风力机安装的几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信