Keyvan Esmaeelpour, R. Shafaghat, R. Alamian, R. Bayani
{"title":"Numerical study of various geometries of breakwaters for the installation of floating wind turbines","authors":"Keyvan Esmaeelpour, R. Shafaghat, R. Alamian, R. Bayani","doi":"10.3329/JNAME.V13I1.22866","DOIUrl":null,"url":null,"abstract":"The everyday growing populations all over the world and the necessity of increase in consumption of fossil energies have made the human to discover new energy resources, which are clean, cheap and renewable. Wind energy is one of the renewable energy resources. Considerable wind speed has made settling of wind turbines at sea beneficial and appealing. For this purpose, choosing the appropriate plates to set up wind turbines on the surface of sea is necessary. Regarding the installation condition, by choosing suitable geometry for floating breakwaters, offshore wind turbine can be mounted on them. Suitable geometry of breakwater for multifunctional usage could be selected with analyzing and comparing pressure, force and moment produced by incoming waves. In this article, we implement boundary element method to solve governing differential equations by assuming potential flow. On the other hand, for promoting free surface in each time step, we employed Euler-Lagrangian method. Finally, to find the appropriate geometry for installing the wind turbine on the breakwater, moment and wave profile next to the right and left side of breakwater body are calculated. Among simulated geometries, breakwater with trapezoid geometry which its larger base is placed in the water has more sustainability and it is the most suitable geometry for wind turbine installation.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"13 1","pages":"27-37"},"PeriodicalIF":1.2000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V13I1.22866","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V13I1.22866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2
Abstract
The everyday growing populations all over the world and the necessity of increase in consumption of fossil energies have made the human to discover new energy resources, which are clean, cheap and renewable. Wind energy is one of the renewable energy resources. Considerable wind speed has made settling of wind turbines at sea beneficial and appealing. For this purpose, choosing the appropriate plates to set up wind turbines on the surface of sea is necessary. Regarding the installation condition, by choosing suitable geometry for floating breakwaters, offshore wind turbine can be mounted on them. Suitable geometry of breakwater for multifunctional usage could be selected with analyzing and comparing pressure, force and moment produced by incoming waves. In this article, we implement boundary element method to solve governing differential equations by assuming potential flow. On the other hand, for promoting free surface in each time step, we employed Euler-Lagrangian method. Finally, to find the appropriate geometry for installing the wind turbine on the breakwater, moment and wave profile next to the right and left side of breakwater body are calculated. Among simulated geometries, breakwater with trapezoid geometry which its larger base is placed in the water has more sustainability and it is the most suitable geometry for wind turbine installation.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.