{"title":"NUMERICAL SIMULATION OF WATER ENTRY OF DIFFERENT ARBITRARY BOW SECTIONS","authors":"P. Ghadimi, M. A. F. Chekab, A. Dashtimanesh","doi":"10.3329/JNAME.V11I2.18724","DOIUrl":null,"url":null,"abstract":"Water impact phenomenon of general bow section is a critical event for planning hulls. In this paper, the water entry of several arbitrary bow sections is investigated. For this purpose, arbitrary bow shapes which are introduced by Lewis form approximation are considered. In order to obtain pressure distribution and free surface profile, volume of fluid (VOF) method coupled with finite volume method (FVM) are utilized in Ansys-CFX solver. The main feature of present study is consideration of some new arbitrary bow sections which have not been previously studied. Another motivation of the current work is investigation of water entry of arbitrary bow sections using a coupled numerical solution of FVM/VOF. Pressure distribution, free surface, and evolution of intersection point on bow sections are presented, while secondary water impact is demonstrated. Comparison of selected current findings against the results of previous studies indicates favorable agreement. DOI: http://dx.doi.org/10.3329/jname.v11i2.18724","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"11 1","pages":"117-129"},"PeriodicalIF":1.2000,"publicationDate":"2014-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V11I2.18724","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V11I2.18724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 32
Abstract
Water impact phenomenon of general bow section is a critical event for planning hulls. In this paper, the water entry of several arbitrary bow sections is investigated. For this purpose, arbitrary bow shapes which are introduced by Lewis form approximation are considered. In order to obtain pressure distribution and free surface profile, volume of fluid (VOF) method coupled with finite volume method (FVM) are utilized in Ansys-CFX solver. The main feature of present study is consideration of some new arbitrary bow sections which have not been previously studied. Another motivation of the current work is investigation of water entry of arbitrary bow sections using a coupled numerical solution of FVM/VOF. Pressure distribution, free surface, and evolution of intersection point on bow sections are presented, while secondary water impact is demonstrated. Comparison of selected current findings against the results of previous studies indicates favorable agreement. DOI: http://dx.doi.org/10.3329/jname.v11i2.18724
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.