Decentralized H2 Controller Design for Descriptor Systems: An LMI Approach;

Q3 Mathematics
G. Zhai, Masaharu Yoshida, J. Imae, Tomoaki Kobayashi
{"title":"Decentralized H2 Controller Design for Descriptor Systems: An LMI Approach;","authors":"G. Zhai, Masaharu Yoshida, J. Imae, Tomoaki Kobayashi","doi":"10.3182/20050703-6-CZ-1902.01549","DOIUrl":null,"url":null,"abstract":"This paper considers a decentralized H2 control problem for multichannel linear time-invariant (LTI) descriptor systems. Our interest is to design a low order dynamic output feedback controller. The control problem is reduced to a feasibility problem of a bilinear matrix inequality (BMI) with respect to variables of a coefficient matrix defining the controller, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measurement output matrix (or the control input matrix), we propose to set the Lyapunov matrix in the BMI as block diagonal appropriately so that the BMI is reduced to LMIs.","PeriodicalId":40023,"journal":{"name":"Nonlinear Dynamics and Systems Theory","volume":"6 1","pages":"98-108"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3182/20050703-6-CZ-1902.01549","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics and Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20050703-6-CZ-1902.01549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

This paper considers a decentralized H2 control problem for multichannel linear time-invariant (LTI) descriptor systems. Our interest is to design a low order dynamic output feedback controller. The control problem is reduced to a feasibility problem of a bilinear matrix inequality (BMI) with respect to variables of a coefficient matrix defining the controller, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measurement output matrix (or the control input matrix), we propose to set the Lyapunov matrix in the BMI as block diagonal appropriately so that the BMI is reduced to LMIs.
广义系统的分散H2控制器设计:一种LMI方法
研究了多通道线性时不变广义系统的分散H2控制问题。我们的兴趣是设计一个低阶动态输出反馈控制器。将控制问题简化为一个双线性矩阵不等式(BMI)的可行性问题,该不等式关于定义控制器的系数矩阵、李雅普诺夫矩阵和与描述符矩阵相关的矩阵的变量。在描述子矩阵与测量输出矩阵(或控制输入矩阵)匹配的条件下,我们提出将BMI中的Lyapunov矩阵适当地设置为块对角线,从而将BMI约化为lmi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Dynamics and Systems Theory
Nonlinear Dynamics and Systems Theory Mathematics-Applied Mathematics
CiteScore
1.60
自引率
0.00%
发文量
2
期刊介绍: Nonlinear Dynamics and Systems Theory is an international journal published quarterly. The journal publishes papers in all aspects of nonlinear dynamics and systems theory according to its scope. The object of the journal is to promote collaboration in the world community and to develop the contemporary nonlinear dynamics and systems theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信