The weakly zero-divisor graph of a commutative ring

IF 0.6 4区 数学 Q3 MATHEMATICS
M. Nikmehr, A. Azadi, R. Nikandish
{"title":"The weakly zero-divisor graph of a commutative ring","authors":"M. Nikmehr, A. Azadi, R. Nikandish","doi":"10.33044/REVUMA.1677","DOIUrl":null,"url":null,"abstract":". Let R be a commutative ring with identity, and let Z ( R ) be the set of zero-divisors of R . The weakly zero-divisor graph of R is the undirected (simple) graph W Γ( R ) with vertex set Z ( R ) ∗ , and two distinct vertices x and y are adjacent if and only if there exist r ∈ ann( x ) and s ∈ ann( y ) such that rs = 0. It follows that W Γ( R ) contains the zero-divisor graph Γ( R ) as a subgraph. In this paper, the connectedness, diameter, and girth of W Γ( R ) are investigated. Moreover, we determine all rings whose weakly zero-divisor graphs are star. We also give conditions under which weakly zero-divisor and zero-divisor graphs are identical. Finally, the chromatic number of W Γ( R ) is studied.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/REVUMA.1677","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

. Let R be a commutative ring with identity, and let Z ( R ) be the set of zero-divisors of R . The weakly zero-divisor graph of R is the undirected (simple) graph W Γ( R ) with vertex set Z ( R ) ∗ , and two distinct vertices x and y are adjacent if and only if there exist r ∈ ann( x ) and s ∈ ann( y ) such that rs = 0. It follows that W Γ( R ) contains the zero-divisor graph Γ( R ) as a subgraph. In this paper, the connectedness, diameter, and girth of W Γ( R ) are investigated. Moreover, we determine all rings whose weakly zero-divisor graphs are star. We also give conditions under which weakly zero-divisor and zero-divisor graphs are identical. Finally, the chromatic number of W Γ( R ) is studied.
交换环的弱零因子图
. 设R是一个有恒等的交换环,设Z (R)是R的零因子的集合。R的弱零因子图是顶点集Z (R) *的无向(简单)图W Γ(R),且两个不同的顶点x和y相邻当且仅当R∈ann(x)和s∈ann(y)使得rs = 0。由此可知,W Γ(R)包含零因子图Γ(R)作为子图。本文研究了W Γ(R)的连通性、直径和周长。此外,我们还确定了所有弱零因子图为星型的环。给出了弱零因子图和弱零因子图相同的条件。最后,研究了W Γ(R)的色数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信