{"title":"Flexographic ink-coating interactions : Effects of latex variations in coating layers","authors":"E. Bohlin, C. Johansson, M. Lestelius","doi":"10.32964/TJ15.4.253","DOIUrl":null,"url":null,"abstract":"The aim of the work described in this thesis is to characterize the structure of coatings and prints, and to validate models for the optical response and interaction of ink and coating based on optical measurements of physical samples. It is the interactions between the printing ink and the porous structure of the coating layers that are subject to investigation. Experiments have been employed to relate the physical conditions in a flexographic printing nip to the ink setting and the resulting optical response.By comparing simulated and measured results, it was shown that modifications of the surface properties account for the brightness decrease when substrates are calendered. Light scattering simulations, taking into account the surface micro-roughness and the increase in the effective refractive index, showed that surface modifications accounted for most of the observed brightness decrease, whereas the bulk light scattering and light absorption coefficients were not affected by calendering.Ink penetration affects the print density, mottling and dot gain. Results show that ink distribution is strongly affected by surface roughness, differences in pore size and pore size distribution. For samples having different latex amounts and different latex particle sizes, a higher print force did not increase the depth of penetrated ink to any great extent, but rather allowed the wetting to act more efficiently with a more evenly distributed ink film, a higher print density and fewer uncovered areas as a result. Uncovered areas could be linked both to local roughness variations and to local wettability variations on the surface. Samples with different ratios of calcium carbonate/kaolin clay pigment showed an increased porosity and an increase in print density with increasing amount of kaolin in the coating layer.","PeriodicalId":22255,"journal":{"name":"Tappi Journal","volume":"15 1","pages":"253-262"},"PeriodicalIF":0.6000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tappi Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32964/TJ15.4.253","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of the work described in this thesis is to characterize the structure of coatings and prints, and to validate models for the optical response and interaction of ink and coating based on optical measurements of physical samples. It is the interactions between the printing ink and the porous structure of the coating layers that are subject to investigation. Experiments have been employed to relate the physical conditions in a flexographic printing nip to the ink setting and the resulting optical response.By comparing simulated and measured results, it was shown that modifications of the surface properties account for the brightness decrease when substrates are calendered. Light scattering simulations, taking into account the surface micro-roughness and the increase in the effective refractive index, showed that surface modifications accounted for most of the observed brightness decrease, whereas the bulk light scattering and light absorption coefficients were not affected by calendering.Ink penetration affects the print density, mottling and dot gain. Results show that ink distribution is strongly affected by surface roughness, differences in pore size and pore size distribution. For samples having different latex amounts and different latex particle sizes, a higher print force did not increase the depth of penetrated ink to any great extent, but rather allowed the wetting to act more efficiently with a more evenly distributed ink film, a higher print density and fewer uncovered areas as a result. Uncovered areas could be linked both to local roughness variations and to local wettability variations on the surface. Samples with different ratios of calcium carbonate/kaolin clay pigment showed an increased porosity and an increase in print density with increasing amount of kaolin in the coating layer.
期刊介绍:
An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews.
Available at no charge to TAPPI members, each issue of TAPPI Journal features research in pulp, paper, packaging, tissue, nonwovens, converting, bioenergy, nanotechnology or other innovative cellulosic-based products and technologies. Publishing in TAPPI Journal delivers your research to a global audience of colleagues, peers and employers.