Consistency of log-likelihood-based information criteria for selecting variables in high-dimensional canonical correlation analysis under nonnormality

IF 0.5 4区 数学 Q3 MATHEMATICS
K. Fukui
{"title":"Consistency of log-likelihood-based information criteria for selecting variables in high-dimensional canonical correlation analysis under nonnormality","authors":"K. Fukui","doi":"10.32917/HMJ/1439219708","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to clarify the conditions for consistency of the loglikelihood-based information criteria in canonical correlation analysis of qand p-dimensional random vectors when the dimension p is large but does not exceed the sample size. Although the vector of observations is assumed to be normally distributed, we do not know whether the underlying distribution is actually normal. Therefore, conditions for consistency are evaluated in a high-dimensional asymptotic framework when the underlying distribution is not normal. AMS 2010 subject classification: Primary 62H12; Secondary 62H20","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":"45 1","pages":"175-205"},"PeriodicalIF":0.5000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1439219708","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of this paper is to clarify the conditions for consistency of the loglikelihood-based information criteria in canonical correlation analysis of qand p-dimensional random vectors when the dimension p is large but does not exceed the sample size. Although the vector of observations is assumed to be normally distributed, we do not know whether the underlying distribution is actually normal. Therefore, conditions for consistency are evaluated in a high-dimensional asymptotic framework when the underlying distribution is not normal. AMS 2010 subject classification: Primary 62H12; Secondary 62H20
非正态性下高维典型相关分析中基于对数似然的变量选择信息准则的一致性
本文的目的是阐明当p维较大但不超过样本量时,基于对数似然的信息准则在q维和p维随机向量的典型相关分析中一致性的条件。虽然假设观测向量是正态分布,但我们不知道底层分布是否真的是正态分布。因此,当底层分布不是正态分布时,在高维渐近框架中评估一致性的条件。AMS 2010学科分类:初级62H12;62年二次用水
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信