{"title":"Indoor Microbiome and The Rising Asthma Prevalence","authors":"Xi Fu, Yu Sun","doi":"10.33590/microbiolinfectdis/19-00190","DOIUrl":null,"url":null,"abstract":"The prevalence of asthma has increased in the past few decades in most developed and developing countries. Large-scale, cross-sectional epidemiological studies have reported several factors associated with asthma prevalence and severity, including parental asthma, tobacco smoking, preterm delivery, virus infection, and air pollution. However, a puzzling problem is that the time trends in the prevalence of these risk factors cannot explain the rise in asthma. For example, the prevalence of smoking and clinical pneumonia have been decreasing globally in the past few decades. Recent progress in high-throughput sequencing technology has promoted the progress of microbiome research and established associations between human and indoor microbiomes, and many metabolic, cognitive, and immune diseases including asthma and allergies. In this review, the authors systematically summarise the current literature, standard practice, and analysis pipeline in the field of indoor microbiome and asthma. The strength and limitation of different analytical approaches are discussed, including the utilisation of relative and absolute abundance in the associated studies. The authors discuss new frameworks of integrated microbiome research from different ecological niches, functional profiling from multiomics data, and how these new insights can facilitate understanding of asthma mechanisms and even the development of new personalised treatment strategies for the rising asthma epidemic.","PeriodicalId":72900,"journal":{"name":"EMJ. Microbiology & infectious diseases","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMJ. Microbiology & infectious diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33590/microbiolinfectdis/19-00190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of asthma has increased in the past few decades in most developed and developing countries. Large-scale, cross-sectional epidemiological studies have reported several factors associated with asthma prevalence and severity, including parental asthma, tobacco smoking, preterm delivery, virus infection, and air pollution. However, a puzzling problem is that the time trends in the prevalence of these risk factors cannot explain the rise in asthma. For example, the prevalence of smoking and clinical pneumonia have been decreasing globally in the past few decades. Recent progress in high-throughput sequencing technology has promoted the progress of microbiome research and established associations between human and indoor microbiomes, and many metabolic, cognitive, and immune diseases including asthma and allergies. In this review, the authors systematically summarise the current literature, standard practice, and analysis pipeline in the field of indoor microbiome and asthma. The strength and limitation of different analytical approaches are discussed, including the utilisation of relative and absolute abundance in the associated studies. The authors discuss new frameworks of integrated microbiome research from different ecological niches, functional profiling from multiomics data, and how these new insights can facilitate understanding of asthma mechanisms and even the development of new personalised treatment strategies for the rising asthma epidemic.