A method for constructing an optimal control strategy in a linear terminal problem

Q4 Mathematics
Dz. A. Kastsiukevich, N. Dmitruk
{"title":"A method for constructing an optimal control strategy in a linear terminal problem","authors":"Dz. A. Kastsiukevich, N. Dmitruk","doi":"10.33581/2520-6508-2021-2-38-50","DOIUrl":null,"url":null,"abstract":"This paper deals with an optimal control problem for a linear discrete system subject to unknown bounded disturbances, where the control goal is to steer the system with guarantees into a given terminal set while minimising the terminal cost function. We define an optimal control strategy which takes into account the state of the system at one future time instant and propose an efficient numerical method for its construction. The results of numerical experiments show an improvement in performance under the optimal control strategy in comparison to the optimal open-loop worst-case control while maintaining comparable computation times.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2021-2-38-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

This paper deals with an optimal control problem for a linear discrete system subject to unknown bounded disturbances, where the control goal is to steer the system with guarantees into a given terminal set while minimising the terminal cost function. We define an optimal control strategy which takes into account the state of the system at one future time instant and propose an efficient numerical method for its construction. The results of numerical experiments show an improvement in performance under the optimal control strategy in comparison to the optimal open-loop worst-case control while maintaining comparable computation times.
线性终端问题的最优控制策略构造方法
本文研究了一类具有未知有界扰动的线性离散系统的最优控制问题,其控制目标是使系统在保证条件下进入给定的终端集,同时使终端代价函数最小。我们定义了一种考虑系统未来某一时刻状态的最优控制策略,并提出了一种有效的数值构造方法。数值实验结果表明,与最优开环最坏情况控制相比,在保持相当计算时间的情况下,最优控制策略的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
21
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信