Dual-wavelength reflectance-ratio method for emissivity-free temperature measurements applied to electromagnetically levitated liquid Ni

IF 1.1 4区 工程技术 Q4 Engineering
H. Kobatake, Masaya Iwabuchi, Yuma Kurokawa, M. Ohtsuka, M. Adachi, H. Fukuyama, N. Sasajima, Yoshiro Yamada
{"title":"Dual-wavelength reflectance-ratio method for emissivity-free temperature measurements applied to electromagnetically levitated liquid Ni","authors":"H. Kobatake, Masaya Iwabuchi, Yuma Kurokawa, M. Ohtsuka, M. Adachi, H. Fukuyama, N. Sasajima, Yoshiro Yamada","doi":"10.32908/hthp.v52.1431","DOIUrl":null,"url":null,"abstract":"The applicability of the dual-wavelength reflectance-ratio (DWR) method to emissivity-free radiation thermometry of electromagnetically levitated high-temperature liquid metals was investigated. To establish the measurement technique, the DWR method was applied to liquid Ni levitated in a static magnetic field, which suppresses the surface oscillation and the translational motion. In a previous study, temperature of the levitated liquid metals measured by DWR showed deviations of about 95 K to 175 K from the temperature measured by a calibrated pyrometer. Since this discrepancy could be attributed to the imperfect contribution of the auxiliary light, the effect of the optical setup of the auxiliary light on the temperature measurement was investigated in this study. By using a reflecting collimator for the auxiliary optical system and adopting the radiance ratio determined considering the geometrical arrangement of the measurement system, the difference between temperature of liquid Ni kept near its melting temperature (𝑇𝑚 = 1728 K) measured using DWR and the temperature measured by a pyrometer calibrated using the melting point of Ni was 12 K on average and the standard deviation in the temperature measurement was 25 K (𝑛 = 5).","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v52.1431","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The applicability of the dual-wavelength reflectance-ratio (DWR) method to emissivity-free radiation thermometry of electromagnetically levitated high-temperature liquid metals was investigated. To establish the measurement technique, the DWR method was applied to liquid Ni levitated in a static magnetic field, which suppresses the surface oscillation and the translational motion. In a previous study, temperature of the levitated liquid metals measured by DWR showed deviations of about 95 K to 175 K from the temperature measured by a calibrated pyrometer. Since this discrepancy could be attributed to the imperfect contribution of the auxiliary light, the effect of the optical setup of the auxiliary light on the temperature measurement was investigated in this study. By using a reflecting collimator for the auxiliary optical system and adopting the radiance ratio determined considering the geometrical arrangement of the measurement system, the difference between temperature of liquid Ni kept near its melting temperature (𝑇𝑚 = 1728 K) measured using DWR and the temperature measured by a pyrometer calibrated using the melting point of Ni was 12 K on average and the standard deviation in the temperature measurement was 25 K (𝑛 = 5).
电磁悬浮液态镍无发射率温度测量的双波长反射率比法
研究了双波长反射率法在电磁悬浮高温液态金属无发射率辐射测温中的适用性。为了建立测量技术,将DWR方法应用于悬浮在静态磁场中的液体Ni,该方法抑制了表面振荡和平移运动。在先前的一项研究中,用DWR测量的悬浮液态金属的温度与校准高温计测量的温度偏差约为95 K至175 K。由于这种差异可能是由于辅助光的贡献不完全造成的,因此本文研究了辅助光的光学设置对温度测量的影响。辅助光学系统采用反射准直器,采用考虑测量系统几何布置确定的亮度比,用DWR测得的保持在熔点附近的液态Ni(𝑇𝑚= 1728 K)的温度与用Ni熔点标定的高温计测得的温度之差平均为12 K,测温标准差为25 K(𝑛= 5)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信