Normal spectral emissivity and heat capacity of Pd–Fe melts measured at constant pressure under electromagnetic levitation with a static magnetic field
{"title":"Normal spectral emissivity and heat capacity of Pd–Fe melts measured at constant pressure under electromagnetic levitation with a static magnetic field","authors":"M. Watanabe, M. Adachi, M. Uchikoshi, H. Fukuyama","doi":"10.32908/hthp.v52.1423","DOIUrl":null,"url":null,"abstract":"The normal spectral emissivity at 807 and 940 nm and heat capacity at constant pressure of Pd–Fe melts were measured under electromagnetic levitation with a static magnetic field. The samples were made of Fe of mass purity 99.9985%. The present emissivity of Fe melts was relatively low compared with previously reported data using Fe with purity lower than 99.95% mass purity. The spectral emission of the Fe melts was analyzed using their normal spectral emissivity obtained from the Drude model. The excess heat capacity of Pd–Fe melts was evaluated from the measured heat capacity of Pd–Fe melts. Applying the Lupis–Elliot rule, we concluded from the obtained excess heat capacity that the enthalpy of mixing and excess entropy of the Pd–Fe melts should be negative. The composition dependence of the enthalpy of mixing, excess entropy, and excess Gibbs energy of Pd–Fe melts were evaluated using data obtained in this study and the literature.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"44 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v52.1423","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The normal spectral emissivity at 807 and 940 nm and heat capacity at constant pressure of Pd–Fe melts were measured under electromagnetic levitation with a static magnetic field. The samples were made of Fe of mass purity 99.9985%. The present emissivity of Fe melts was relatively low compared with previously reported data using Fe with purity lower than 99.95% mass purity. The spectral emission of the Fe melts was analyzed using their normal spectral emissivity obtained from the Drude model. The excess heat capacity of Pd–Fe melts was evaluated from the measured heat capacity of Pd–Fe melts. Applying the Lupis–Elliot rule, we concluded from the obtained excess heat capacity that the enthalpy of mixing and excess entropy of the Pd–Fe melts should be negative. The composition dependence of the enthalpy of mixing, excess entropy, and excess Gibbs energy of Pd–Fe melts were evaluated using data obtained in this study and the literature.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.