{"title":"Quantifying facility performance during thermophysical property measurement of liquid Zr using Electrostatic Levitation","authors":"Jannatun Nawer, D. Matson","doi":"10.32908/hthp.v52.1315","DOIUrl":null,"url":null,"abstract":"Density, thermal expansion coefficient, surface tension and viscosity of liquid Zr at high temperatures were measured by oscillating droplet method in two Electrostatic Levitation (ESL) facilities. The ground-based tests at NASA MSFC ESL were conducted in vacuum and the space-based tests at JAXA ELF were conducted in Argon atmosphere with both results reported as a function of temperature. The accuracy and precision of each set of the measurement techniques has been reported using a detailed uncertainty analysis on both facilities. The uncertainties associated with each measurement were used to characterize performance for each facility. Zr samples processed in microgravity showed heavy influence of oxidation which lowered the natural frequency and thus significantly affecting the accuracy of surface tension measurement. The ground-based results are comparable to previously reported literature values.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v52.1315","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Density, thermal expansion coefficient, surface tension and viscosity of liquid Zr at high temperatures were measured by oscillating droplet method in two Electrostatic Levitation (ESL) facilities. The ground-based tests at NASA MSFC ESL were conducted in vacuum and the space-based tests at JAXA ELF were conducted in Argon atmosphere with both results reported as a function of temperature. The accuracy and precision of each set of the measurement techniques has been reported using a detailed uncertainty analysis on both facilities. The uncertainties associated with each measurement were used to characterize performance for each facility. Zr samples processed in microgravity showed heavy influence of oxidation which lowered the natural frequency and thus significantly affecting the accuracy of surface tension measurement. The ground-based results are comparable to previously reported literature values.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.