Lili Liu, Y. Wen, Shanshan Liu, Jing Xiong, Q. Liao
{"title":"Pressure and temperature effects on the anisotropic and thermodynamic properties of NiAl and FeAl","authors":"Lili Liu, Y. Wen, Shanshan Liu, Jing Xiong, Q. Liao","doi":"10.32908/hthp.v51.1119","DOIUrl":null,"url":null,"abstract":"We present the elastic constants of NiAl and FeAl compounds under high pressure and high temperature by using a first-principles approach. The temperature dependent elastic constants are predicted from the combinations of static volume-dependent elastic constants derived from the first-principles total-energy method within the density-functional theory (DFT). The calculated lattice and elastic constants at ground state are in agreement with the existing experimental and other theoretical values. Using the density-functional perturbation theory (DFPT) under the quasi-harmonic approximation (QHA), the temperature and pressure dependencies of the bulk modulus, the volume expansion, the thermal expansion, as well as the heat capacity at constant pressure are systematically investigated in the ranges of 0-1200 K and 0-50 GPa.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v51.1119","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
We present the elastic constants of NiAl and FeAl compounds under high pressure and high temperature by using a first-principles approach. The temperature dependent elastic constants are predicted from the combinations of static volume-dependent elastic constants derived from the first-principles total-energy method within the density-functional theory (DFT). The calculated lattice and elastic constants at ground state are in agreement with the existing experimental and other theoretical values. Using the density-functional perturbation theory (DFPT) under the quasi-harmonic approximation (QHA), the temperature and pressure dependencies of the bulk modulus, the volume expansion, the thermal expansion, as well as the heat capacity at constant pressure are systematically investigated in the ranges of 0-1200 K and 0-50 GPa.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.