{"title":"Effect of silica particle size and filler content on the fracture properties of epoxy resin composite","authors":"Zafer Azem, U. Malayoğlu, B. Uyulgan","doi":"10.32908/hthp.v50.999","DOIUrl":null,"url":null,"abstract":"Silica particles were used as a filler to produce silica-epoxy composite. Silica particles with two mean diameters of 1 μm and 37 μm and filler content of 20, 30, 40, and 60 wt. % were used to investigate the effect of particle size and filler content on the fracture behavior of epoxy resin composite, respectively. The fractural behavior of composites was characterized by linear elastic fracture mechanics according to standard of ASTM-D5045 in which three-point bending test procedure was used to investigate plane-strain fracture toughness (Kıc) and strain energy release rate (Gıc) of the composite specimens. Glass transient temperatures of the samples were evaluated by using differential scanning calorimetry (DSC). Fracture surfaces of the produced specimens were examined by SEM. The highest Young’s modulus value was 10.48 GPa for the sample produced with 37 μm particle size and 60 wt. % filler content and it was found that a considerable increase was obtained according to the 3.05 MPa values of the unfilled epoxy. Experimental results show that fracture toughness value of the silica filled epoxy composite was improved by 98% compared to unfilled epoxy.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.999","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Silica particles were used as a filler to produce silica-epoxy composite. Silica particles with two mean diameters of 1 μm and 37 μm and filler content of 20, 30, 40, and 60 wt. % were used to investigate the effect of particle size and filler content on the fracture behavior of epoxy resin composite, respectively. The fractural behavior of composites was characterized by linear elastic fracture mechanics according to standard of ASTM-D5045 in which three-point bending test procedure was used to investigate plane-strain fracture toughness (Kıc) and strain energy release rate (Gıc) of the composite specimens. Glass transient temperatures of the samples were evaluated by using differential scanning calorimetry (DSC). Fracture surfaces of the produced specimens were examined by SEM. The highest Young’s modulus value was 10.48 GPa for the sample produced with 37 μm particle size and 60 wt. % filler content and it was found that a considerable increase was obtained according to the 3.05 MPa values of the unfilled epoxy. Experimental results show that fracture toughness value of the silica filled epoxy composite was improved by 98% compared to unfilled epoxy.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.