Phononic, electronic, elastic and thermodynamic properties of ScSi under high pressure via first principles calculations

IF 1.1 4区 工程技术 Q4 Engineering
Jinjuan Sun, Shaobo Chen, K. Yao, Ying Chen, X. Yao
{"title":"Phononic, electronic, elastic and thermodynamic properties of ScSi under high pressure via first principles calculations","authors":"Jinjuan Sun, Shaobo Chen, K. Yao, Ying Chen, X. Yao","doi":"10.32908/hthp.v50.939","DOIUrl":null,"url":null,"abstract":"In present paper, we perform first principles based on density functional theory to investigate the effect of high pressure on phononic, electronic, elastic and thermodynamic properties of ScSi. It is found that phonon dispersion curve of ScSi has no virtual frequency within a given pressure range from 0 GPa to 35 GPa, indicating that the material is thermodynamically stable. When a given pressure is larger than 40 GPa, ScSi is thermodynamically instable and will occurs phase transition. Band structure and density of states confirm that ScSi is metallic. The elastic constant Cij increases with increasing pressure, and meets the Born�s criterion, which shows that ScSi possesses mechanical stability. Meanwhile, the ductility and toughness of material increase with increasing pressure, which is very conducive to industrial applications. In addition, Debye temperature and sound velocity increase linearly with pressures, indicating that appropriate pressure can improve elasticity, hardness, melting point and specific heat.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.939","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In present paper, we perform first principles based on density functional theory to investigate the effect of high pressure on phononic, electronic, elastic and thermodynamic properties of ScSi. It is found that phonon dispersion curve of ScSi has no virtual frequency within a given pressure range from 0 GPa to 35 GPa, indicating that the material is thermodynamically stable. When a given pressure is larger than 40 GPa, ScSi is thermodynamically instable and will occurs phase transition. Band structure and density of states confirm that ScSi is metallic. The elastic constant Cij increases with increasing pressure, and meets the Born�s criterion, which shows that ScSi possesses mechanical stability. Meanwhile, the ductility and toughness of material increase with increasing pressure, which is very conducive to industrial applications. In addition, Debye temperature and sound velocity increase linearly with pressures, indicating that appropriate pressure can improve elasticity, hardness, melting point and specific heat.
通过第一性原理计算高压下ScSi的声子、电子、弹性和热力学性质
本文基于密度泛函理论,运用第一性原理研究了高压对ScSi声子、电子、弹性和热力学性质的影响。在给定的压力范围内(0 ~ 35 GPa), ScSi声子色散曲线没有虚频率,表明材料是热力学稳定的。当给定压力大于40gpa时,ScSi是热力学不稳定的,并且会发生相变。能带结构和态密度证实ScSi是金属的。弹性常数Cij随压力的增大而增大,符合Born准则,表明ScSi具有力学稳定性。同时,材料的延展性和韧性随压力的增大而增大,非常有利于工业应用。此外,德拜温度和声速随压力线性增加,表明适当的压力可以提高弹性、硬度、熔点和比热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信