Jieren Luo, Qiuhui Yan, Zhao-zan Feng, M. Zhang, Yaxin Yang
{"title":"Exergy and energy analysis on coal/biomass co-gasification in supercritical water","authors":"Jieren Luo, Qiuhui Yan, Zhao-zan Feng, M. Zhang, Yaxin Yang","doi":"10.32908/hthp.v50.927","DOIUrl":null,"url":null,"abstract":"Supercritical water gasification (SCWG) is a promising technology for clean and efficient utilization of carbonaceous organic materials at high temperature and pressure. Coal/biomass co-gasification in supercritical water (SCW) is a better choice for both coal and biomass to offset their disadvantages. Therefore, based on the experimental results of coal/carboxymethylcellulose (CMC, as a model compound of biomass) co-gasification in SCW by continuous flow thermal-catalytic reaction system at a reactor wall temperature of 650 �C, pressure of 25 MPa, a residence time 30 s and 0.1 wt% NaOH additive, the effects of heat transfer efficiency, heat supply methods, and CMC fraction on exergy and energy efficiency of reactor (the core device in reaction system) were investigated. The results show that energy and exergy efficiencies are in excess of 69% and 43%, respectively. The priority order of heat supply for the reactor is as follow: lower temperature heat source > higher temperature heat source > direct electricity heat supply method. The heat transfer efficiency has great influence on the energy and exergy efficiencies in terms of thermophysics. The higher CMC fraction is helpful to improve exergy efficiency.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.927","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Supercritical water gasification (SCWG) is a promising technology for clean and efficient utilization of carbonaceous organic materials at high temperature and pressure. Coal/biomass co-gasification in supercritical water (SCW) is a better choice for both coal and biomass to offset their disadvantages. Therefore, based on the experimental results of coal/carboxymethylcellulose (CMC, as a model compound of biomass) co-gasification in SCW by continuous flow thermal-catalytic reaction system at a reactor wall temperature of 650 �C, pressure of 25 MPa, a residence time 30 s and 0.1 wt% NaOH additive, the effects of heat transfer efficiency, heat supply methods, and CMC fraction on exergy and energy efficiency of reactor (the core device in reaction system) were investigated. The results show that energy and exergy efficiencies are in excess of 69% and 43%, respectively. The priority order of heat supply for the reactor is as follow: lower temperature heat source > higher temperature heat source > direct electricity heat supply method. The heat transfer efficiency has great influence on the energy and exergy efficiencies in terms of thermophysics. The higher CMC fraction is helpful to improve exergy efficiency.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.