N. Çobanoğlu, Alper Genc, S. Korkut, Z. H. Karadeniz, M. Buschmann
{"title":"Volume-independent contact angle prediction","authors":"N. Çobanoğlu, Alper Genc, S. Korkut, Z. H. Karadeniz, M. Buschmann","doi":"10.32908/hthp.v50.1021","DOIUrl":null,"url":null,"abstract":"The contact angle of droplets attracts attention as one of the relevant thermophysical properties describing the wettability behaviour of the fluids. The contact angle depends on the surface characteristics such as surface type and roughness as well as on the liquid type and surrounding atmosphere. This study aims to correct the error in the coefficient of the theoretical model developed for droplet shape prediction by Vafaei and Podowski [1]. The corrected model is also rearranged by non-dimensional numbers. The contact angle and the shape of water droplets for different volumes and surface types are predicted by the rearranged model and validated by experimental results. Contact angles have been over-estimated compared to experimental results because of measurement errors in geometrical parameters. It is found that the contact angle model is too sensitive to geometrical parameters. Moreover, the contact angle is found to be independent of the volume.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.1021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The contact angle of droplets attracts attention as one of the relevant thermophysical properties describing the wettability behaviour of the fluids. The contact angle depends on the surface characteristics such as surface type and roughness as well as on the liquid type and surrounding atmosphere. This study aims to correct the error in the coefficient of the theoretical model developed for droplet shape prediction by Vafaei and Podowski [1]. The corrected model is also rearranged by non-dimensional numbers. The contact angle and the shape of water droplets for different volumes and surface types are predicted by the rearranged model and validated by experimental results. Contact angles have been over-estimated compared to experimental results because of measurement errors in geometrical parameters. It is found that the contact angle model is too sensitive to geometrical parameters. Moreover, the contact angle is found to be independent of the volume.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.