B. Hay, N. Milošević, J. Hameury, N. Stepanić, G. Failleau, Y. Garcia, A. Koenen, J. Filtz
{"title":"Inter-laboratory comparison on thermal conductivity measurements by the guarded hot plate method between LNE and Institute VINČA","authors":"B. Hay, N. Milošević, J. Hameury, N. Stepanić, G. Failleau, Y. Garcia, A. Koenen, J. Filtz","doi":"10.32908/hthp.v50.1001","DOIUrl":null,"url":null,"abstract":"An inter-laboratory comparison has been organized between LNE and Institute VINČA, respectively French National Metrology Institute and Serbian Designated Institute for thermal properties metrology, on thermal conductivity measurements by the guarded hot plate method. The main objective was to validate the measurement capabilities of VINČA in terms of thermal conductivity in the temperature range from 10 °C to 50 °C by using the facility improved in the frame of the European project Eura-Thermal. The measurements were carried out on expanded polystyrene boards using guarded hot plate apparatuses (two-specimen GHP apparatuses) in accordance with the international standard ISO 8302. The measurement programme was defined taking into account the major characteristics of the guarded hot plate apparatuses used, such as specimen dimensions and temperature and thermal conductivity ranges. Specimens were machined by LNE from a same batch for both participants. Prior to the measurements, the homogeneity of the set of specimens, as well as the influence of a variation of density of the expanded polystyrene on the thermal conductivity measurements were studied by VINČA.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.1001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
An inter-laboratory comparison has been organized between LNE and Institute VINČA, respectively French National Metrology Institute and Serbian Designated Institute for thermal properties metrology, on thermal conductivity measurements by the guarded hot plate method. The main objective was to validate the measurement capabilities of VINČA in terms of thermal conductivity in the temperature range from 10 °C to 50 °C by using the facility improved in the frame of the European project Eura-Thermal. The measurements were carried out on expanded polystyrene boards using guarded hot plate apparatuses (two-specimen GHP apparatuses) in accordance with the international standard ISO 8302. The measurement programme was defined taking into account the major characteristics of the guarded hot plate apparatuses used, such as specimen dimensions and temperature and thermal conductivity ranges. Specimens were machined by LNE from a same batch for both participants. Prior to the measurements, the homogeneity of the set of specimens, as well as the influence of a variation of density of the expanded polystyrene on the thermal conductivity measurements were studied by VINČA.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.