{"title":"Status of Investigation to Ensure Applicability of ECCS Acceptance Criteria to High-Burnup Fuel","authors":"M. Ozawa, M. Amaya","doi":"10.3327/taesj.j19.020","DOIUrl":null,"url":null,"abstract":"Light-water reactors (LWRs) are equipped with an emergency core cooling system (ECCS) that is designed to maintain the coolable geometry of the reactor core and finally minimize the release of radioactive fission products to the public and environment even in a loss-of-coolant accident (LOCA). Acceptance criteria for the ECCS of LWRs were determined to evaluate the safety function and performance in the design and to ensure a sufficient safety margin in the results of the evaluation. The latest revision of the criteria was made in 1981 in Japan, referring to the additional knowledge obtained after the previous revision. Fuel burnup has been extended by changing cladding materials, fuel design, etc., since the latest revision. Correspondingly, knowledge has been accumulated through studies on high-burnup fuel behavior under LOCA conditions to confirm the safety during the LOCA. This paper is a summary of the investigation and remaining issues on the applicability of the current Japanese ECCS acceptance criteria to high-burnup fuel, considering the history and basis of the current acceptance criteria. Results of the investigation conducted up to now reveal that the influence of burnup extension is small in terms of the cladding behavior of high-temperature oxidation and the fracture limit in quenching during the LOCA condition, and the current criteria are applicable even in the case of high-burnup fuel.","PeriodicalId":55893,"journal":{"name":"Transactions of the Atomic Energy Society of Japan","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Atomic Energy Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3327/taesj.j19.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Light-water reactors (LWRs) are equipped with an emergency core cooling system (ECCS) that is designed to maintain the coolable geometry of the reactor core and finally minimize the release of radioactive fission products to the public and environment even in a loss-of-coolant accident (LOCA). Acceptance criteria for the ECCS of LWRs were determined to evaluate the safety function and performance in the design and to ensure a sufficient safety margin in the results of the evaluation. The latest revision of the criteria was made in 1981 in Japan, referring to the additional knowledge obtained after the previous revision. Fuel burnup has been extended by changing cladding materials, fuel design, etc., since the latest revision. Correspondingly, knowledge has been accumulated through studies on high-burnup fuel behavior under LOCA conditions to confirm the safety during the LOCA. This paper is a summary of the investigation and remaining issues on the applicability of the current Japanese ECCS acceptance criteria to high-burnup fuel, considering the history and basis of the current acceptance criteria. Results of the investigation conducted up to now reveal that the influence of burnup extension is small in terms of the cladding behavior of high-temperature oxidation and the fracture limit in quenching during the LOCA condition, and the current criteria are applicable even in the case of high-burnup fuel.