Possibilities of Evaluating the Dimensional Acceptability of Workpieces Using Computer Vision

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
I. Svalina, D. Turinski, I. Grgić, S. Havrlisan
{"title":"Possibilities of Evaluating the Dimensional Acceptability of Workpieces Using Computer Vision","authors":"I. Svalina, D. Turinski, I. Grgić, S. Havrlisan","doi":"10.31803/tg-20221109143423","DOIUrl":null,"url":null,"abstract":"This paper discusses the possibilities of an automated solution for determining dimensionally accurate and defective products using a computer vision system. In a real industrial environment, research was conducted on a prototype of a quality control machine, i.e. a machine that, based on product images, evaluates whether the product is accurate or defective using computer vision. Various geometric features are extracted from the obtained images of products, on the basis of which a fuzzy inference system based on Fuzzy C-means clustering features is created. The extracted geometric features represent the input variables, and the output variable has two values - true and false. The root mean square error in the evaluation of the accuracy and defectiveness of products ranges between 0.07 and 0.16. Through this research, valuable findings and conclusions were reached for the future research, since this topic is poorly examined in the most renowned databases.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20221109143423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses the possibilities of an automated solution for determining dimensionally accurate and defective products using a computer vision system. In a real industrial environment, research was conducted on a prototype of a quality control machine, i.e. a machine that, based on product images, evaluates whether the product is accurate or defective using computer vision. Various geometric features are extracted from the obtained images of products, on the basis of which a fuzzy inference system based on Fuzzy C-means clustering features is created. The extracted geometric features represent the input variables, and the output variable has two values - true and false. The root mean square error in the evaluation of the accuracy and defectiveness of products ranges between 0.07 and 0.16. Through this research, valuable findings and conclusions were reached for the future research, since this topic is poorly examined in the most renowned databases.
用计算机视觉评价工件尺寸可接受性的可能性
本文讨论了利用计算机视觉系统自动确定尺寸精确和缺陷产品的可能性。在真实的工业环境中,研究了质量控制机的原型,即根据产品图像使用计算机视觉评估产品是否准确或有缺陷的机器。从获得的产品图像中提取各种几何特征,在此基础上建立基于模糊c均值聚类特征的模糊推理系统。提取的几何特征表示输入变量,输出变量有true和false两个值。产品准确性和不合格率评价的均方根误差在0.07 - 0.16之间。通过这项研究,为未来的研究得出了有价值的发现和结论,因为这个主题在大多数知名的数据库中都没有得到充分的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信