Leveling Maintenance Mechanism by Using the Fabry-Perot Interferometer with Machine Learning Technology

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
Syuan-Cheng Chang, Chung-Ping Chang, Yung-Cheng Wang, Chi-Chieh Chu
{"title":"Leveling Maintenance Mechanism by Using the Fabry-Perot Interferometer with Machine\nLearning Technology","authors":"Syuan-Cheng Chang, Chung-Ping Chang, Yung-Cheng Wang, Chi-Chieh Chu","doi":"10.31803/tg-20230425154156","DOIUrl":null,"url":null,"abstract":"This study proposes a method for maintaining parallelism of the optical cavity of a laser interferometer using machine learning. The Fabry-Perot interferometer is utilized as an experimental optical structure in this research due to its advantage of having a brief optical structure. The supervised machine learning method is used to train algorithms to accurately classify and predict the tilt angle of the plane mirror using labeled interference images. Based on the predicted results, stepper motors are fixed on a plane mirror that can automatically adjust the pitch and yaw angles. According to the experimental results, the average correction error and standard deviation in 17-grid classification experiment are 32.38 and 11.21 arcseconds, respectively. In 25-grid classification experiment, the average correction error and standard deviation are 19.44 and 7.86 arcseconds, respectively. The results show that this parallelism maintenance technology has essential for the semiconductor industry and precision positioning technology.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20230425154156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a method for maintaining parallelism of the optical cavity of a laser interferometer using machine learning. The Fabry-Perot interferometer is utilized as an experimental optical structure in this research due to its advantage of having a brief optical structure. The supervised machine learning method is used to train algorithms to accurately classify and predict the tilt angle of the plane mirror using labeled interference images. Based on the predicted results, stepper motors are fixed on a plane mirror that can automatically adjust the pitch and yaw angles. According to the experimental results, the average correction error and standard deviation in 17-grid classification experiment are 32.38 and 11.21 arcseconds, respectively. In 25-grid classification experiment, the average correction error and standard deviation are 19.44 and 7.86 arcseconds, respectively. The results show that this parallelism maintenance technology has essential for the semiconductor industry and precision positioning technology.
基于机器学习技术的法布里-珀罗干涉仪调平维修机构
本研究提出了一种利用机器学习保持激光干涉仪光学腔平行度的方法。由于法布里-珀罗干涉仪具有光学结构简单的优点,本研究采用该干涉仪作为实验光学结构。采用监督式机器学习方法训练算法,利用标记干涉图像对平面镜的倾斜角进行准确分类和预测。根据预测结果,将步进电机固定在能自动调节俯仰角和偏航角的平面镜上。实验结果表明,17格分类实验的平均校正误差和标准差分别为32.38和11.21弧秒。在25格分类实验中,平均校正误差为19.44角秒,标准差为7.86角秒。结果表明,这种并行维护技术对半导体工业和精密定位技术具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信