Exploring optimal tank size for rainwater harvesting systems in Asian tropical climates

IF 0.6 Q4 WATER RESOURCES
Vuong Minh Nguyen, Y. Ichikawa, H. Ishidaira
{"title":"Exploring optimal tank size for rainwater harvesting systems in Asian tropical climates","authors":"Vuong Minh Nguyen, Y. Ichikawa, H. Ishidaira","doi":"10.3178/HRL.12.1","DOIUrl":null,"url":null,"abstract":"This paper explores optimal tank size for domestic rainwater harvesting systems in Asian tropical climates. A total of 128 locations in Vietnam covering three regional climate patterns were selected for the study. The system behavior was simulated on a daily basis using between 27 and 32 years of rainfall data. Annual water cost was investigated to determine optimal tank size. The relationship among optimal size, climate and system conditions was also analyzed. Results of the study emphasize the economic benefit of rainwater harvesting for the whole study area. The optimal tank size for a non-potable rainwater harvesting system has a range of 1.2–2.6 m3, exhibiting 19–65% supply efficiency and a payback period of 7–17 years. Extended system scenarios reveal a contrast in the influences of demand and roof area on optimal size in relation to rainfall amount. The roof area is critical in determining optimal size in the low rainfall area while the demand is important in the high rainfall area. Although there is a certain degree of variability in optimal tank size, it does not considerably undermine the economic benefit of a rainwater harvesting system.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.12.1","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.12.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 6

Abstract

This paper explores optimal tank size for domestic rainwater harvesting systems in Asian tropical climates. A total of 128 locations in Vietnam covering three regional climate patterns were selected for the study. The system behavior was simulated on a daily basis using between 27 and 32 years of rainfall data. Annual water cost was investigated to determine optimal tank size. The relationship among optimal size, climate and system conditions was also analyzed. Results of the study emphasize the economic benefit of rainwater harvesting for the whole study area. The optimal tank size for a non-potable rainwater harvesting system has a range of 1.2–2.6 m3, exhibiting 19–65% supply efficiency and a payback period of 7–17 years. Extended system scenarios reveal a contrast in the influences of demand and roof area on optimal size in relation to rainfall amount. The roof area is critical in determining optimal size in the low rainfall area while the demand is important in the high rainfall area. Although there is a certain degree of variability in optimal tank size, it does not considerably undermine the economic benefit of a rainwater harvesting system.
探索亚洲热带气候下雨水收集系统的最佳水箱尺寸
本文探讨了亚洲热带气候下家庭雨水收集系统的最佳水箱尺寸。越南总共选择了128个地点进行研究,涵盖了三种区域气候模式。使用27至32年的降雨数据,每天模拟系统的行为。研究了年用水成本,以确定最佳水箱尺寸。分析了最优规模与气候、系统条件之间的关系。研究结果强调了雨水收集对整个研究区域的经济效益。非饮用雨水收集系统的最佳水箱尺寸为1.2-2.6立方米,供应效率为19-65%,投资回收期为7-17年。扩展系统情景揭示了需求和屋顶面积对与降雨量相关的最佳尺寸的影响的对比。在低降雨量地区,屋顶面积是确定最佳尺寸的关键,而在高降雨量地区,需求是重要的。虽然在最佳水箱尺寸上存在一定程度的可变性,但它不会大大破坏雨水收集系统的经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信