S. Wakamatsu, K. Oshio, K. Ishihara, H. Murai, T. Nakashima, Tsuyoshi Inoue
{"title":"Estimating regional climate change uncertainty in Japan at the end of the 21st century with mixture distribution","authors":"S. Wakamatsu, K. Oshio, K. Ishihara, H. Murai, T. Nakashima, Tsuyoshi Inoue","doi":"10.3178/HRL.11.65","DOIUrl":null,"url":null,"abstract":"To facilitate accurate assessments of the regional impacts of global warming, and make informed decisions about appropriate measures to mitigate them, detailed global warming projections with uncertainties are needed. The Ministry of Environment of Japan and the Japan Meteorological Agency performed 21 different multiscenario and multiensemble experiments in Japan using the regional climate model MRI-NHRCM with a horizontal resolution of 20 km. To estimate the total range of uncertainty due to natural fluctuations and the variety of experimental runs by a single climate model with multi-physics and multi-SST ensembles under each greenhouse gas emission scenario, a unique statistical method that combined a mixture distribution and bootstrap resampling was adopted. Based on three models that adopted the Yoshimura scheme as a cumulus convection parameterization, annual mean temperatures in Japan were projected to rise significantly by 1.1 ± 0.4°C, 2.0 ± 0.4°C, 2.6 ± 0.6°C, and 4.4 ± 0.6°C under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively, at the end of the 21st century relative to the end of the 20th century (ensemble means ± standard deviations). In contrast, changes in future annual precipitation over Japan were projected to be statistically insignificant.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.11.65","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.11.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4
Abstract
To facilitate accurate assessments of the regional impacts of global warming, and make informed decisions about appropriate measures to mitigate them, detailed global warming projections with uncertainties are needed. The Ministry of Environment of Japan and the Japan Meteorological Agency performed 21 different multiscenario and multiensemble experiments in Japan using the regional climate model MRI-NHRCM with a horizontal resolution of 20 km. To estimate the total range of uncertainty due to natural fluctuations and the variety of experimental runs by a single climate model with multi-physics and multi-SST ensembles under each greenhouse gas emission scenario, a unique statistical method that combined a mixture distribution and bootstrap resampling was adopted. Based on three models that adopted the Yoshimura scheme as a cumulus convection parameterization, annual mean temperatures in Japan were projected to rise significantly by 1.1 ± 0.4°C, 2.0 ± 0.4°C, 2.6 ± 0.6°C, and 4.4 ± 0.6°C under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively, at the end of the 21st century relative to the end of the 20th century (ensemble means ± standard deviations). In contrast, changes in future annual precipitation over Japan were projected to be statistically insignificant.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.