Estimating regional climate change uncertainty in Japan at the end of the 21st century with mixture distribution

IF 0.6 Q4 WATER RESOURCES
S. Wakamatsu, K. Oshio, K. Ishihara, H. Murai, T. Nakashima, Tsuyoshi Inoue
{"title":"Estimating regional climate change uncertainty in Japan at the end of the 21st century with mixture distribution","authors":"S. Wakamatsu, K. Oshio, K. Ishihara, H. Murai, T. Nakashima, Tsuyoshi Inoue","doi":"10.3178/HRL.11.65","DOIUrl":null,"url":null,"abstract":"To facilitate accurate assessments of the regional impacts of global warming, and make informed decisions about appropriate measures to mitigate them, detailed global warming projections with uncertainties are needed. The Ministry of Environment of Japan and the Japan Meteorological Agency performed 21 different multiscenario and multiensemble experiments in Japan using the regional climate model MRI-NHRCM with a horizontal resolution of 20 km. To estimate the total range of uncertainty due to natural fluctuations and the variety of experimental runs by a single climate model with multi-physics and multi-SST ensembles under each greenhouse gas emission scenario, a unique statistical method that combined a mixture distribution and bootstrap resampling was adopted. Based on three models that adopted the Yoshimura scheme as a cumulus convection parameterization, annual mean temperatures in Japan were projected to rise significantly by 1.1 ± 0.4°C, 2.0 ± 0.4°C, 2.6 ± 0.6°C, and 4.4 ± 0.6°C under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively, at the end of the 21st century relative to the end of the 20th century (ensemble means ± standard deviations). In contrast, changes in future annual precipitation over Japan were projected to be statistically insignificant.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":"11 1","pages":"65-71"},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.11.65","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.11.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4

Abstract

To facilitate accurate assessments of the regional impacts of global warming, and make informed decisions about appropriate measures to mitigate them, detailed global warming projections with uncertainties are needed. The Ministry of Environment of Japan and the Japan Meteorological Agency performed 21 different multiscenario and multiensemble experiments in Japan using the regional climate model MRI-NHRCM with a horizontal resolution of 20 km. To estimate the total range of uncertainty due to natural fluctuations and the variety of experimental runs by a single climate model with multi-physics and multi-SST ensembles under each greenhouse gas emission scenario, a unique statistical method that combined a mixture distribution and bootstrap resampling was adopted. Based on three models that adopted the Yoshimura scheme as a cumulus convection parameterization, annual mean temperatures in Japan were projected to rise significantly by 1.1 ± 0.4°C, 2.0 ± 0.4°C, 2.6 ± 0.6°C, and 4.4 ± 0.6°C under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively, at the end of the 21st century relative to the end of the 20th century (ensemble means ± standard deviations). In contrast, changes in future annual precipitation over Japan were projected to be statistically insignificant.
基于混合分布的21世纪末日本区域气候变化不确定性估算
为了促进对全球变暖的区域影响的准确评估,并就减轻这些影响的适当措施作出明智的决定,需要详细的不确定的全球变暖预估。日本环境省和日本气象厅利用水平分辨率为20公里的区域气候模式MRI-NHRCM在日本进行了21次不同的多情景和多集合试验。为了估算每种温室气体排放情景下单一气候模式多物理场、多海表温度组合的自然波动和试验运行变化的总不确定性范围,采用了混合分布和自举重采样相结合的独特统计方法。基于采用吉村方案作为云对流参数化的3个模式,预测在RCP2.6、RCP4.5、RCP6.0和RCP8.5情景下,21世纪末日本年平均气温相对于20世纪末分别显著上升1.1±0.4°C、2.0±0.4°C、2.6±0.6°C和4.4±0.6°C(总体平均值±标准差)。相比之下,日本未来年降水量的变化预估在统计上是微不足道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信