Graph labelings obtainable by random walks

Q3 Mathematics
S. Fried, T. Mansour
{"title":"Graph labelings obtainable by random walks","authors":"S. Fried, T. Mansour","doi":"10.26493/2590-9770.1644.9ac","DOIUrl":null,"url":null,"abstract":"We initiate the study of what we refer to as random walk labelings of graphs. These are graph labelings that are obtainable by performing a random walk on the graph, such that the labeling occurs increasingly whenever an unlabeled vertex is encountered. Some of the results we obtain involve sums of inverses of binomial coefficients, for which we obtain new identities. In particular, we prove that $\\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\\binom{2k}{k}^{-1}\\binom{n+k}{k}=\\binom{2n}{n}2^{-n}\\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\\binom{2k}{k}^{-1}$, thus confirming a conjecture of Bala.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":"7 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1644.9ac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

We initiate the study of what we refer to as random walk labelings of graphs. These are graph labelings that are obtainable by performing a random walk on the graph, such that the labeling occurs increasingly whenever an unlabeled vertex is encountered. Some of the results we obtain involve sums of inverses of binomial coefficients, for which we obtain new identities. In particular, we prove that $\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\binom{2k}{k}^{-1}\binom{n+k}{k}=\binom{2n}{n}2^{-n}\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\binom{2k}{k}^{-1}$, thus confirming a conjecture of Bala.
通过随机游走获得的图形标记
我们开始研究所谓的图的随机游走标记。这些是通过在图上执行随机漫步来获得的图标记,这样每当遇到未标记的顶点时,标记就会越来越多地发生。我们得到的一些结果涉及二项式系数的逆和,我们得到了新的恒等式。特别是,我们证明美元\ sum_ {k = 0} ^ {n} 2 ^ {k} (2 k + 1) ^ {1} \ binom {2 k} {k} ^ {1} \ binom {n + k} {k} = \ binom {2 n} {n} 2 ^ {n} \ sum_ {k = 0} ^ {n} 2 ^ {k} (2 k + 1) ^ {1} \ binom {2 k} {k} ^{1} $,从而确认巴拉的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Art of Discrete and Applied Mathematics
Art of Discrete and Applied Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信