{"title":"Graph labelings obtainable by random walks","authors":"S. Fried, T. Mansour","doi":"10.26493/2590-9770.1644.9ac","DOIUrl":null,"url":null,"abstract":"We initiate the study of what we refer to as random walk labelings of graphs. These are graph labelings that are obtainable by performing a random walk on the graph, such that the labeling occurs increasingly whenever an unlabeled vertex is encountered. Some of the results we obtain involve sums of inverses of binomial coefficients, for which we obtain new identities. In particular, we prove that $\\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\\binom{2k}{k}^{-1}\\binom{n+k}{k}=\\binom{2n}{n}2^{-n}\\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\\binom{2k}{k}^{-1}$, thus confirming a conjecture of Bala.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":"7 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1644.9ac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
We initiate the study of what we refer to as random walk labelings of graphs. These are graph labelings that are obtainable by performing a random walk on the graph, such that the labeling occurs increasingly whenever an unlabeled vertex is encountered. Some of the results we obtain involve sums of inverses of binomial coefficients, for which we obtain new identities. In particular, we prove that $\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\binom{2k}{k}^{-1}\binom{n+k}{k}=\binom{2n}{n}2^{-n}\sum_{k=0}^{n-1}2^{k}(2k+1)^{-1}\binom{2k}{k}^{-1}$, thus confirming a conjecture of Bala.