THE LUCAS POLYNOMIAL SOLUTION OF LINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

Deniz Elmaci, Nurcan Baykus, Savasaneril .
{"title":"THE LUCAS POLYNOMIAL SOLUTION OF LINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS","authors":"Deniz Elmaci, Nurcan Baykus, Savasaneril .","doi":"10.26480/msmk.01.2022.21.25","DOIUrl":null,"url":null,"abstract":"In this study, linear Volterra-Fredholm integral equations are approximatively solved in terms of Lucas polynomials about any point in this study using a practical matrix approach. This technique uses collocation points and Lucas polynomials to transform the aforementioned linear Volterra-Fredholm integral problem into a matrix equation. Lucas coefficients are unknown in the system of linear algebraic equations. With the use of an error estimation, some illustrated examples are also provided. The outcomes demonstrate how effective and practical the suggested methodology is. Code was created in MATLAB to acquire the matrix equations and answers for the chosen issues.","PeriodicalId":32521,"journal":{"name":"Matrix Science Mathematic","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Mathematic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/msmk.01.2022.21.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, linear Volterra-Fredholm integral equations are approximatively solved in terms of Lucas polynomials about any point in this study using a practical matrix approach. This technique uses collocation points and Lucas polynomials to transform the aforementioned linear Volterra-Fredholm integral problem into a matrix equation. Lucas coefficients are unknown in the system of linear algebraic equations. With the use of an error estimation, some illustrated examples are also provided. The outcomes demonstrate how effective and practical the suggested methodology is. Code was created in MATLAB to acquire the matrix equations and answers for the chosen issues.
线性volterra-fredholm积分方程的Lucas多项式解
在本研究中,线性Volterra-Fredholm积分方程在本研究中使用一种实用的矩阵方法,用Lucas多项式近似地求解了任意点的线性Volterra-Fredholm积分方程。该技术使用搭配点和卢卡斯多项式将前面提到的线性Volterra-Fredholm积分问题转化为矩阵方程。在线性代数方程组中,卢卡斯系数是未知的。利用误差估计的方法,给出了一些实例。结果表明所建议的方法是有效和实用的。在MATLAB中编写代码,获取所选问题的矩阵方程和答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信