Spaces of series in system of functions

Q3 Mathematics
M. Sheremeta
{"title":"Spaces of series in system of functions","authors":"M. Sheremeta","doi":"10.30970/ms.59.1.46-59","DOIUrl":null,"url":null,"abstract":"The Banach and Fr\\'{e}chet spaces of series $A(z)=\\sum_{n=1}^{\\infty}a_nf(\\lambda_nz)$ regularly converging in ${\\mathbb C}$,where $f$ is an entire transcendental function and $(\\lambda_n)$ is a sequence of positive numbers increasing to $+\\infty$, are studied.Let $M_f(r)=\\max\\{|f(z)|:\\,|z|=r\\}$, $\\Gamma_f(r)=\\frac{d\\ln\\,M_f(r)}{d\\ln\\,r}$, $h$ be positive continuous function on $[0,+\\infty)$increasing to $+\\infty$ and ${\\bf S}_h(f,\\Lambda)$ be a class of the function $A$ such that $|a_n|M_f(\\lambda_nh(\\lambda_n))$ $\\to 0$ as$n\\to+\\infty$. Define $\\|A\\|_h=\\max\\{|a_n|M_f(\\lambda_nh(\\lambda_n)):n\\ge 1\\}$. It is proved that if$\\ln\\,n=o(\\Gamma_f(\\lambda_n))$ as $n\\to\\infty$ then $({\\bf S}_h(f,\\Lambda),\\|\\cdot\\|_h)$ is a non-uniformly convexBanach space which is also separable.In terms of generalized orders, the relationship between the growth of $\\mathfrak{M}(r,A)=\\break=\\sum_{n=1}^{\\infty} |a_n|M_f(r\\lambda_n)$,the maximal term $\\mu(r,A)= \\max\\{|a_n|M_f(r\\lambda_n)\\colon n\\ge 1\\}$ and the central index$\\nu(r,A)= \\max\\{n\\ge 1\\colon |a_n|M_f(r\\lambda_n)=\\mu(r,A)\\}$ and the decrease of the coefficients $a_n$.The results obtained are used to construct Fr\\'{e}chet spaces of series in systems of functions.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.46-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The Banach and Fr\'{e}chet spaces of series $A(z)=\sum_{n=1}^{\infty}a_nf(\lambda_nz)$ regularly converging in ${\mathbb C}$,where $f$ is an entire transcendental function and $(\lambda_n)$ is a sequence of positive numbers increasing to $+\infty$, are studied.Let $M_f(r)=\max\{|f(z)|:\,|z|=r\}$, $\Gamma_f(r)=\frac{d\ln\,M_f(r)}{d\ln\,r}$, $h$ be positive continuous function on $[0,+\infty)$increasing to $+\infty$ and ${\bf S}_h(f,\Lambda)$ be a class of the function $A$ such that $|a_n|M_f(\lambda_nh(\lambda_n))$ $\to 0$ as$n\to+\infty$. Define $\|A\|_h=\max\{|a_n|M_f(\lambda_nh(\lambda_n)):n\ge 1\}$. It is proved that if$\ln\,n=o(\Gamma_f(\lambda_n))$ as $n\to\infty$ then $({\bf S}_h(f,\Lambda),\|\cdot\|_h)$ is a non-uniformly convexBanach space which is also separable.In terms of generalized orders, the relationship between the growth of $\mathfrak{M}(r,A)=\break=\sum_{n=1}^{\infty} |a_n|M_f(r\lambda_n)$,the maximal term $\mu(r,A)= \max\{|a_n|M_f(r\lambda_n)\colon n\ge 1\}$ and the central index$\nu(r,A)= \max\{n\ge 1\colon |a_n|M_f(r\lambda_n)=\mu(r,A)\}$ and the decrease of the coefficients $a_n$.The results obtained are used to construct Fr\'{e}chet spaces of series in systems of functions.
函数系统中的级数空间
研究了级数$A(z)=\sum_{n=1}^{\infty}a_nf(\lambda_nz)$正则收敛于${\mathbb C}$的Banach和fr切空间,其中$f$是一个完整的超越函数,$(\lambda_n)$是一个递增到$+\infty$的正数序列。设$M_f(r)=\max\{|f(z)|:\,|z|=r\}$、$\Gamma_f(r)=\frac{d\ln\,M_f(r)}{d\ln\,r}$、$h$为$[0,+\infty)$上的正连续函数,增加到$+\infty$、${\bf S}_h(f,\Lambda)$为函数$A$的一类,使得$|a_n|M_f(\lambda_nh(\lambda_n))$、$\to 0$为$n\to+\infty$。定义$\|A\|_h=\max\{|a_n|M_f(\lambda_nh(\lambda_n)):n\ge 1\}$。证明了如果$\ln\,n=o(\Gamma_f(\lambda_n))$为$n\to\infty$,则$({\bf S}_h(f,\Lambda),\|\cdot\|_h)$是一个非一致凸巴拿赫空间,且该空间也是可分的。在广义阶下,得到了$\mathfrak{M}(r,A)=\break=\sum_{n=1}^{\infty} |a_n|M_f(r\lambda_n)$、极大项$\mu(r,A)= \max\{|a_n|M_f(r\lambda_n)\colon n\ge 1\}$和中心指标$\nu(r,A)= \max\{n\ge 1\colon |a_n|M_f(r\lambda_n)=\mu(r,A)\}$的增长与系数降低$a_n$的关系,并利用所得结果构造了函数系统中级数的fr切空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信