C. J. Schenk, T. Mercier, T. Finn, K. Marra, P. Le, Heidi M. Leathers-Miller, J. Pitman, M. Brownfield, R. M. Drake
{"title":"Assessment of continuous gas resources in the Permian Phosphoria Formation of the Southwestern Wyoming Province, Wyoming, 2019","authors":"C. J. Schenk, T. Mercier, T. Finn, K. Marra, P. Le, Heidi M. Leathers-Miller, J. Pitman, M. Brownfield, R. M. Drake","doi":"10.3133/fs20193047","DOIUrl":null,"url":null,"abstract":"U.S. Department of the Interior U.S. Geological Survey Fact Sheet 2019–3047 October 2019 Introduction The U.S. Geological Survey (USGS) quantitatively assessed the potential for undiscovered, technically recoverable continuous resources in organic-rich shales of the Permian Phosphoria Formation within the Southwestern Wyoming Province (fig. 1). The Phosphoria Formation represents a complex stratigraphic unit that was deposited in an oceanic embayment along the west-facing Permian continental margin (Sheldon, 1963). During Guadalupian time, cold, nutrient-rich currents from the north swept the embayment, resulting in deposition of phosphatic mudstone, organic-rich shale, and chert in what was otherwise a sediment-starved basin (Piper and Medrano, 1994; Carroll and others, 1998). The deepwater lithologies of the basin transition eastward to shallow-water shelf carbonates of the Permian Park City Formation and finally to continental red mudstone and evaporites of the Permian Goose Egg Formation. Much of the area with the deepwater facies of the Phosphoria Formation is within the Wyoming Thrust Belt Province, but there are deepwater deposits in which the Phosphoria Formation is as much as 10,000 meters (m) deep in the western part of the Southwest Wyoming Province. The purpose of this assessment is to estimate technically recoverable shale-gas resources within Phosphoria Formation shales.","PeriodicalId":36286,"journal":{"name":"U.S. Geological Survey Fact Sheet","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.S. Geological Survey Fact Sheet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3133/fs20193047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
U.S. Department of the Interior U.S. Geological Survey Fact Sheet 2019–3047 October 2019 Introduction The U.S. Geological Survey (USGS) quantitatively assessed the potential for undiscovered, technically recoverable continuous resources in organic-rich shales of the Permian Phosphoria Formation within the Southwestern Wyoming Province (fig. 1). The Phosphoria Formation represents a complex stratigraphic unit that was deposited in an oceanic embayment along the west-facing Permian continental margin (Sheldon, 1963). During Guadalupian time, cold, nutrient-rich currents from the north swept the embayment, resulting in deposition of phosphatic mudstone, organic-rich shale, and chert in what was otherwise a sediment-starved basin (Piper and Medrano, 1994; Carroll and others, 1998). The deepwater lithologies of the basin transition eastward to shallow-water shelf carbonates of the Permian Park City Formation and finally to continental red mudstone and evaporites of the Permian Goose Egg Formation. Much of the area with the deepwater facies of the Phosphoria Formation is within the Wyoming Thrust Belt Province, but there are deepwater deposits in which the Phosphoria Formation is as much as 10,000 meters (m) deep in the western part of the Southwest Wyoming Province. The purpose of this assessment is to estimate technically recoverable shale-gas resources within Phosphoria Formation shales.